• 제목/요약/키워드: Field Component

검색결과 1,646건 처리시간 0.038초

The impact of artificial discrete simulation of wind field on vehicle running performance

  • Wu, Mengxue;Li, Yongle;Chen, Ning
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.169-189
    • /
    • 2015
  • To investigate the effects of "sudden change" of wind fluctuations on vehicle running performance, which is caused by the artificial discrete simulation of wind field, a three-dimensional vehicle model is set up with multi-body dynamics theory and the vehicle dynamic responses in crosswind conditions are obtained in time domain. Based on Hilbert Huang Transform, the effects of simulation separations on time-frequency characteristics of wind field are discussed. In addition, the probability density distribution of "sudden change" of wind fluctuations is displayed, addressing the effects of simulation separation, mean wind speed and vehicle speed on the "sudden change" of wind fluctuations. The "sudden change" of vehicle dynamic responses, which is due to the discontinuity of wind fluctuations on moving vehicle, is also analyzed. With Principal Component Analysis, the comprehensive evaluation of vehicle running performance in crosswind conditions at different simulation separations of wind field is investigated. The results demonstrate that the artificial discrete simulation of wind field often causes "sudden change" in the wind fluctuations and the corresponding vehicle dynamic responses are noticeably affected. It provides a theoretical foundation for the choice of a suitable simulation separation of wind field in engineering application.

용액에서의 아미노산 및 단백질 자유기에 관한 ESR 연구 제1보 ; Ti-$H_2O_2$ Flow System에서 자유기를 만드는 반응기구 (AN ESR STUDY OF AMINO ACID AND PROTEIN FREE RADICALS IN SOLUTION PART I. Reaction Mechanism of Free Radical Production in the Ti-$H_2O_2$ Flow System)

  • 홍순주
    • 대한화학회지
    • /
    • 제15권1호
    • /
    • pp.37-44
    • /
    • 1971
  • The reaction of amino acids and the reactive hydroxyl radical generated by $Ti^{3+}-H_2O_2$ system was studied using fast flow techniques coupled with ESR. Upon adding methionine to the 0.2M $H_2O_2$ solution (0.05M methionine after addition) and mixing with 0.01M $TiCl_3$, the low field component of the two incompletely resolved peaks, in the spectrum of $Ti^{3+}-H_2O_2$ system alone, vanished completely whereas the high field component remained almost constant and superimposed on the secondary spectrum of the methionine free radical. Similar results were obtained for other amino acids and proteins. The results strongly demonstrate that the $T^{3+}-H_2O_2$ flow system generates two different radical species, only one of which, giving rise to the low field component, is alone responsible for abstracting hydrogen atoms from substrate molecules. The effects of HCl, $H_2SO_4$ and NaOH on the system were also studied with widely varying results.

  • PDF

Deriving vertical velocity in tornadic wind field from radar-measured data and improving tornado simulation by including vertical velocity at velocity inlet

  • Yi Zhao;Guirong Yan;Ruoqiang Feng;Zhongdong Duan;Houjun Kang
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.245-259
    • /
    • 2024
  • In a tornadic wind field, the vertical velocity component in certain regions of tornadoes can be significant, forming one of the major differences between tornadic wind fields and synoptic straight-line wind fields. To better understand the wind characteristics of tornadoes and properly estimate the action of tornadoes on civil structures, it is important to ensure that all the attributes of tornadoes are captured. Although Doppler radars have been used to measure tornadic wind fields, they can only directly provide information on quasi-horizontal velocity. Therefore, lots of numerical simulations and experimental tests in previous research ignored the vertical velocity at the boundary. However, the influence of vertical velocity in tornadic wind fields is not evaluated. To address this research gap, this study is to use an approach to derive the vertical velocity component based on the horizontal velocities extracted from the radar-measured data by mass continuity. This approach will be illustrated by using the radar-measured data of Spencer Tornado as an example. The vertical velocity component is included in the initial inflow condition in the CFD simulation to assess the influence of including vertical velocity in the initial inflow condition on the entire tornadic wind field.

열전소자 원리를 이용한 부품 Tester용 온도공급 장치 연구 (메모리 Device Tester용 온도제어장치 도입을 위한 연구) (A Study for Adopting the Temperature Control Unit on Memory Device Tester Based on Principle of Thermoelectric Semiconductor)

  • 김선주;홍철호;신동욱;서승범;이무재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.414-416
    • /
    • 2003
  • 메모리 제품의 사용 환경은 점차적으로 High Speed/High Density화됨에 따라 현 Comp. Test 환경으로 Field 환경을 모두 수용하기가 어려워지고 있다. 따라서, Component Level에서 다양한 실장 System을 이용한 Screen 방법이 요구 되고 있다. 다양한 환경에서 Test를 실시하기 위해서 필수 불가결한 조건은 온도(Temperature)를 자동으로 제어(Control)할 수 있는 기능이 필요하게 되었다. 이에, 현재 사용하고 있는 방법은 Chamber나 히터를 이용하고 있으나 온도 제어가 보다 용이하고 정밀한 기능이 요구됨에 따라 열전반도체(Thermoelectric semiconductor)원리를 이용한 온도 제어 장치 도입을 위한 연구가 진행되었다. 본 논문에서는 그 개발 현황 및 평가 결과를 근거로 신규 Component실장 Tester에 효율적으로 도입 적용 가능함을 제시 하고자 한다. 또한, 향후 기타 Tester 및 산업용 설비 등에 까지 확대적용 가능함으로써 전자부품(메모리)의 품질 향상 및 설비투자 Cost절감 효과가 기대 된다.

  • PDF

KPACK: Relativistic Two-component Ab Initio Electronic Structure Program Package

  • Kim, Inkoo;Lee, Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.179-187
    • /
    • 2013
  • We describe newly developed software named KPACK for relativistic electronic structure computation of molecules containing heavy elements that enables the two-component ab initio calculations in Kramers restricted and unrestricted formalisms in the framework of the relativistic effective core potential (RECP). The spin-orbit coupling as relativistic effect enters into the calculation at the Hartree-Fock (HF) stage and hence, is treated in a variational manner to generate two-component molecular spinors as one-electron wavefunctions for use in the correlated methods. As correlated methods, KPACK currently provides the two-component second-order M${\o}$ller-Plesset perturbation theory (MP2), configuration interaction (CI) and complete-active-space self-consistent field (CASSCF) methods. Test calculations were performed for the ground states of group-14 elements, for which the spin-orbit coupling greatly influences the determination of term symbols. A categorization of three procedures is suggested for the two-component methods on the basis of spin-orbit coupling manifested in the HF level.

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

Magnetic Resonance Imaging of a Current Density Component

  • Oh, Suk-Hoon;Park, Tae-Seok;Han, Jae-Yong;Lee, Soo-Yeol
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권3호
    • /
    • pp.183-188
    • /
    • 2004
  • Magnetic resonance current density imaging (MRCDI) is a useful method for measuring electrical current density distribution inside an object. To avoid object rotations during the conventional MRCDI scans, we have reconstructed current density component images by applying a spatial filter to the magnetic field data measured both inside and outside the object. To measure the magnetic field outside the object with MRI, we immersed the object in a water tank. To evaluate accuracy of the current density imaging, we have made a conductivity phantom with a corresponding finite element method model. We have compared the experimentally obtained current density images with the ones calculated by the finite element method. The average errors of the reconstructed current density images were 6.6 ∼ 45.4 % when the injected currents were 1 ∼ 24 mA. We expect that the current density component imaging technique can be used in diverse biomedical applications such as electrical therapy system developments and biological electrical safety analysis.

THE 3D BOUSSINESQ EQUATIONS WITH REGULARITY IN THE HORIZONTAL COMPONENT OF THE VELOCITY

  • Liu, Qiao
    • 대한수학회보
    • /
    • 제57권3호
    • /
    • pp.649-660
    • /
    • 2020
  • This paper proves a new regularity criterion for solutions to the Cauchy problem of the 3D Boussinesq equations via one directional derivative of the horizontal component of the velocity field (i.e., (∂iu1; ∂ju2; 0) where i, j ∈ {1, 2, 3}) in the framework of the anisotropic Lebesgue spaces. More precisely, for 0 < T < ∞, if $$\large{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_o}^T}({\HUGE\left\|{\small{\parallel}{\partial}_iu_1(t){\parallel}_{L^{\alpha}_{x_i}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}+}{\HUGE\left\|{\small{\parallel}{\partial}_iu_2(t){\parallel}_{L^{\alpha}_{x_j}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}})dt<{{\infty}},$$ where ${\frac{2}{{\gamma}}}+{\frac{1}{{\alpha}}}+{\frac{2}{{\beta}}}=m{\in}[1,{\frac{3}{2}})$ and ${\frac{3}{m}}{\leq}{\alpha}{\leq}{\beta}<{\frac{1}{m-1}}$, then the corresponding solution (u, θ) to the 3D Boussinesq equations is regular on [0, T]. Here, (i, ${\hat{i}}$, ${\tilde{i}}$) and (j, ${\hat{j}}$, ${\tilde{j}}$) belong to the permutation group on the set 𝕊3 := {1, 2, 3}. This result reveals that the horizontal component of the velocity field plays a dominant role in regularity theory of the Boussinesq equations.

자장과 온도에 의한 임계전류특성을 가지는 초전도 코일 EMTDC 컴포넌트 개발 (Development of EMTDC component for HTS coil considering $I_c$(B,T) characteristic)

  • 이재득;정희열;김재호;김진근;박민원;유인근;이언용;백승규;김호민;권영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.949-950
    • /
    • 2007
  • Before applying HTS power device to the real utility system, a system analysis should be carried out by some simulator. PSCAD/EMTDC simulation tool is one of the most popular system analysis. Unfortunately the model component for HTS coil is not provided in the PSCAD/EMTDC simulation tool. In this paper, the model component for the HTS coil has been developed considering the real field data, temperature and magnetic field, of the HTS coil. The numerical model of HTS coil in PSCAD/EMTDC was designed by using the real experimented data obtained from the $AMSC^{TM}$ wire characteristic. The developed model component for HTS coil could be variously used when the power system includes HTS coil.

  • PDF