References
- A. Arbieto, L. Senos, and T. Sodero, The specification property for flows from the robust and generic viewpoint, J. Differential Equations 253 (2012), no. 1, 1893-1909. https://doi.org/10.1016/j.jde.2012.05.022
- C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), no. 1, 33-104. https://doi.org/10.1007/s00222-004-0368-1
-
C. Bonatti and L. Diaz, Robust heterodimensional cycles and
$C^1$ -generic dynamics, J. Inst. Math. Jussieu 7 (2008), no. 3, 469-525. -
S. Hayashi, Connecting invariant manifolds and the solution of the
$C^1$ stability and${\Omega}$ -stability conjectures for flows, Ann. of Math. 145 (1997), no. 1, 81-137. https://doi.org/10.2307/2951824 - K. Lee, M. Lee, and S. Lee, Hyperbolicity of expansive homoclinic classes, preprint.
-
K. Lee, L. Tien, and X. Wen, Robustly shadowable chain component of
$C^1$ -vector fields, J. Korean Math. Soc. 51 (2014), no. 1, 17-53. https://doi.org/10.4134/JKMS.2014.51.1.017 - K. Moriyasu, K. Sakai, and N. Sumi, Vector fields with topological stability, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3391-3408. https://doi.org/10.1090/S0002-9947-01-02748-9
-
R. Ribeiro, Hyperbolicity and types of shadowing for
$C^1$ generic vector fields, arXiv: 1305.2977v1. -
K. Sakai,
$C^1$ -stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029. - L. Senos, Generic Bowen-expansive flows, Bull. Braz. Math. Soc. 43 (2012), no. 1, 59-71. https://doi.org/10.1007/s00574-012-0005-3
-
L. Wen, S. Gan, and X. Wen,
$C^1$ -stably shadowable chain components are hyperbolic, J. Differential Equations 236 (2009), no. 1, 340-357.