• Title/Summary/Keyword: Fibrous membrane

Search Result 95, Processing Time 0.034 seconds

Ectopic Bone Formation Induced By BMP - Fibrous Collagen Membrane Composite (BMP-교원질 섬유막 복합체에 의한 이소성 골형성)

  • Shin, Hong-In;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.68-79
    • /
    • 1996
  • To investigate the efficiency of a fibrous collagen membrane(FCM) composed of bovine skin type I atelocollagen as a carrier for BMP, partially purified bovine BMP/FCM($0.3mg/10{\times}5{\times}1mm$) composites were implanted into the dorsal subcutaneous tissue of rats. FCM alone was also implanted as a control. The implants were harvested at 1, 2, 3, and 10 weeks after implantation, then prepared for routine light microscopic observation. The FCM alone did not induce osteogenesis and revealed no specific foreign body reaction nor was there any definite resorptive evidence for 10 weeks after implantation, while the BMP/FCM composites induced favorable bone formation in a process that resembled an endochondral and direct ossification mode. At 10 weeks, the well formed bone confined to embedded collagen fibers revealed hematopoietic marrow between bony trabeculae without evidence of resorptive or degenerative changes . These findings support the suggestion that BMP may induce undifferentiated mesenchymal cells into either chondroblasts or osteoblasts or both independantly according to the chemico- physical characteristics of the carrier, which develops the endochondral and/or direct bone formation process, and suggest that the FCM may be a favorable carrier for BMP.

  • PDF

Osteogenic Potential of the Periosteum and Periosteal Augmentation for Bone-tunnel Healing

  • Youn Inchan;Suh J-K Francis;Choi Kuiwon
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2005
  • Periosteum and periosteum-derived progenitor cells have demonstrated the potential for stimulative applications in repairs of various musculoskeletal tissues. It has been found that the periosteum contains mesenchymal progenitor cells capable of differentiating into either osteoblasts or chondrocytes depending on the culture conditions. Anatomically, the periosteum is a heterogeneous multi-layered membrane, consisting of an inner cambium and an outer fibrous layer. The present study was designed to elucidate the cellular phenotypic characteristics of cambium and fibrous layer cells in vitro, and to assess whether structural integrity of the tendon in the bone tunnel can be improved by periosteal augmentation of the tendon­bone interface. It was found the cells from each layer showed distinct phenotypic characteristics in a primary monolayer culture system. Specifically, the cambium cells demonstrated higher osteogenic characteristics (higher alkaline phosphatase and osteocalcin levels), as compared to the fibrous cells. Also in vivo animal model showed that a periosteal augmentation of a tendon graft could enhance the structural integrity of the tendon-bone interface, when the periosteum is placed between the tendon and bone interface with the cambium layer facing toward the bone. These findings suggest that extra care needs to be taken in order to identify and maintain the intrinsic phenotypes of the heterogeneous cell types within the periosteum. This will improve our understanding of periosteum in applications for musculoskeletal tissue repairs and tissue engineering.

Ultrastructures of the Cutaneous Chromatophores and Pigment Granule Formation in the Goldfish, Carassius auratus L. I. Xanthophore (금붕어(Carassius auratus L.) 피부(皮膚) 색소세포(色素細胞)의 미세구조(微細構造) 및 色素顆粒(색소과립) 형성(形成)에 관한 연구(硏究) I. 황색소세포(黃色素細胞)(xanthophore))

  • Moon, Myung-Jin;Kim, Woo-Kap;Kim, Chang-Whan
    • Applied Microscopy
    • /
    • v.16 no.2
    • /
    • pp.35-48
    • /
    • 1986
  • Ultrastructures of the cutaneous xanthophores and formation of pigment granules in the goldfish, Carassius auratus L., are studied with electron microscope. The cutaneous xanthophores are observed only in dermis and pigment granules of these pigment cells are pterinosomes and carotenoid vesicles. By the differentiated level, pterinosomes are subdivided into 3 types; while type I pterinosomes have clear limiting membranes and contain some amorphous fine fibrous structures, type II pterinosomes have thick and densely aggregated fibrous materials. Type III pterinosomes have concentric lamellar structures in the granules. Pigment granules of the xanthophores are originated from the Golgi complexes and pinocytotic vesicles of plasma membrane as well as rER-rich cells among the chromatophores are presumed to be associated with the accumulation of pigment materials.

  • PDF

The Morphological Study on Inflammation of Murine Knee Joint by Lipopolysaccharide - Based on the Morphological Changes of Synovial Membrane and Fibrous Membrane - (Lipopolysaccharide로 유발된 생쥐 무릎관절낭 염증에 관한 형태학적 연구 - 윤활관절막과 섬유관절막의 변화를 중심으로 -)

  • Kim, Jin-Tack;Ahn, Sang-Hyun;Choi, Nan-Hee;Chung, Jae-Man;Park, In-Sick;Gang, Yun-Ho;Kim, Ho-Hyun;Lee, Hai-Poong
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.7 no.2
    • /
    • pp.107-120
    • /
    • 1999
  • Synovial joint of BALB/C mice were injeced with Lipopolysaccharide(LPS) were observed to investigate the morphological changes of synovial capsule caused by rheumatoid arthritis(RA). The RA on female Balb/c mice were induced by LPS injection, as dose of $300{\mu}{\ell}/kg$, into synovial cavity of knee joint. And then these specimen were fixed in 10% neutral buffered formalin and were decalcificated in EDTA solution for 4 weeks. The hyperplasia of synovium were appeared in synovial membrane. The filopodia of phagocytic like synoviocyte(type I synoviocyte) projected into synovial cavity and the number of fibroblast like synoviocyte(type II synoviocyte) with well-developed endoplasmic reticulum were increased in synovium. In fibrous membrane, the fibrosis induced by synthesis of collagen fiber were enlarged to all fibrous membrane, and the number of fibroblast were increased. A great number of inflammation component cell as lymphocyte and neutrophil leukocyte were infiltrated around capillary and the degranulate typed mast cell were increased. As results indicated that the hyperplasia of synovium induced by LPS, subsequently to cause the fibrosis, infiltration of imflammation component cell, and increase of degranulated type mast cell as same as symptoms of RA.

  • PDF

Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion with Pure and Mixed Solvents (순수용매와 혼합용매를 이용한 상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조)

  • Kim, Young Kyoung;Cho, Yu Song;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2015
  • This paper reports a fabrication of poly(L-lactic acid) (PLLA) scaffold membranes through phase separation process using pure and mixed solvents. Chloroform and 1,4-dioxane were used as pure solvents and mixed solvents were obtained by mixing the pure solvents together. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. Scaffold membranes from the solution with pure chloroform showed solid-wall pore structure. In contrast, nano-fibrous membranes were fabricated from the solution with pure 1,4-dioxane. In case of mixed solvents, the scaffold membranes showed various structures with changing composition of the solvents. When 1,4-dioxane content was lower than 20 wt% in the solvent, scaffold membrane showed solid-wall pore structure. When the content was 20 wt%, scaffold membranes with macropores with the maximum size of $100{\mu}m$ was obtained. In the concentration range of 1,4-dioxane over 25 wt%, the scaffold membranes showed nano-fibrous structures. In this range, the fibers showed different diameters with changing composition of the solvent. The minimum fiber diameter was about $15{\mu}m$, when 1,4-dioxane composition was 80 wt%. These results indicate that the composition of the solvent showed a significant effect on the structure of scaffold membrane.

Polycarprolactone Ultrafine Fiber Membrane Fabricated Using a Charge-reduced Electrohydrodynamic Process

  • Kim, Geun-Hyung;Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon;Koh, Young-Ho
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.533-537
    • /
    • 2009
  • This paper introduces a modified electro spinning system for biomedical wound-healing applications. The conventional electrospinning process requires a grounded electrode on which highly charged electro spun ultrafine fibers are deposited. Biomedical wound-healing membranes, however, require a very low charge and a low level of remnant solvent on the electrospun membrane, which the conventional process cannot provide. An electrohydrodynamic process complemented with field-controllable electrodes (an auxiliary electrode and guiding electrodes) and an air blowing system was used to produce a membrane, with a considerably reduced charge and low remnant solvent concentration compared to one fabricated using the conventional method. The membrane had a small average pore size (102 nm) and high porosity (85.1%) for prevention of bacterial contamination. In vivo tests on rats showed that these directly electro spun fibrous membranes produced using the modified electro spinning process supported the good healing of skin bums.

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion (상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung;Park, Jong Soon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

The Fine Structure of Collar Cell in Tentacles of Chinese Mystery Snail, Cipangopaludina chinensis malleata Reeve (논우렁이 촉수(觸手) 칼라세포(Collar Cell)의 미세구조(微細構造)에 관한 연구(硏究))

  • Song, Yong-Jik;Kim, Woo-Kap;Kim, Chang-Whan
    • Applied Microscopy
    • /
    • v.17 no.2
    • /
    • pp.23-30
    • /
    • 1987
  • There are groups of large monopolar cells containing numerous secretory inclusions in the muscular and connective tissue. These cells contain the electron-lucent vesicles in the size of $0.5{\sim}0.9{\mu}m$, which are secreted to the exterior of the tentacle through their cytoplasmic processes projected to the epithelial layer. Secretory material can be seen accumulating in swollen portions of the granular endoplasmic reticulum. It is postulated that this material is transported to the Golgi-complex and thus the limiting membrane of the inclusions is derived from the Golgi-membrane. An electron lucent material secreted from these cells seems to be similar to fibrous electron lucent material filled in the brush border of the epidermis.

  • PDF

Ultrastructure of Micromonospora rosaria Protoplasts and Their Fusion (Micromonospora rosaria에서 유래된 protoplast의 미세구조 및 fusion에 관한 전자현미경적 연구)

  • Seo, Y.H.;Kim, C.S.;Kim, K.S.
    • Applied Microscopy
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 1983
  • Ultrathin sections of intact mycelia, released protoplast and fused protoplast of Micromonospora rosaria were observed by electron microscopy Intact mycelia showed a typical gram-positive bacterial cell wall structure and mesosomes. Released protoplasts had no cell wall components and fibrous nuclear region was distinguished from cytoplsmic region clearly. Protoplasts which treated with sucrose supplemented buffer were stable. But those treated with buffer without sucrose were extensively damaged, forming mom braneous vesicles. It was surmised that those vesicles originated from the damaged cytoplasmic membrane. High frequency of fusion was achieved by 50%(w/v). polyethylene-glycol 1,000 Fusion bodies in different stage of fusion were observed. Cell membrane barrier was stepwise relieved.

  • PDF

Preliminary evaluation of a three-dimensional, customized, and preformed titanium mesh in peri-implant alveolar bone regeneration

  • Jung, Gyu-Un;Jeon, Jae-Yun;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.4
    • /
    • pp.181-187
    • /
    • 2014
  • Objectives: The purpose of this preliminary study is to evaluate the effectiveness of a customized, three-dimensional, preformed titanium mesh as a barrier membrane for peri-implant alveolar bone regeneration. Materials and Methods: Ten patients were recruited for this study. At the time of implant placement, all patients had fenestration or a dehiscence defect around the implant fixture. A mixture of particulate intraoral autologous bone and freeze-dried bone allograft was applied to the defect in a 1 : 1 volume ratio and covered by the preformed titanium mesh. A core biopsy specimen was taken from the regenerated bone four months postoperatively. Patients were followed for 12 months after the definitive prosthesis was placed. Results: Satisfactory bone regeneration with limited fibrous tissue was detected beneath the preformed titanium mesh. Histologic findings revealed that newly formed bones were well-incorporated into the allografts and connective tissue. New growth was composed of approximately 80% vital bone, 5% fibrous marrow tissue, and 15% remaining allograft. All implants were functional without any significant complications. Conclusion: The use of preformed titanium mesh may support bone regeneration by maintaining space for new bone growth through its macro-pores. This preliminary study presents the efficacy of a preformed titanium mesh as a ready-to-use barrier membrane around peri-implant alveolar bone defect. This preformed mesh is also convenient to apply and to remove.