Browse > Article

Polycarprolactone Ultrafine Fiber Membrane Fabricated Using a Charge-reduced Electrohydrodynamic Process  

Kim, Geun-Hyung (Department of Mechanical Engineering, College of Engineering, Chosun University)
Yoon, Hyeon (Department of Mechanical Engineering, College of Engineering, Chosun University)
Lee, Haeng-Nam (Department of Mechanical Engineering, College of Engineering, Chosun University)
Park, Gil-Moon (Department of Mechanical Engineering, College of Engineering, Chosun University)
Koh, Young-Ho (Ilsong Institute of Life Science, Hallym Medical School, Hallym University)
Publication Information
Macromolecular Research / v.17, no.7, 2009 , pp. 533-537 More about this Journal
Abstract
This paper introduces a modified electro spinning system for biomedical wound-healing applications. The conventional electrospinning process requires a grounded electrode on which highly charged electro spun ultrafine fibers are deposited. Biomedical wound-healing membranes, however, require a very low charge and a low level of remnant solvent on the electrospun membrane, which the conventional process cannot provide. An electrohydrodynamic process complemented with field-controllable electrodes (an auxiliary electrode and guiding electrodes) and an air blowing system was used to produce a membrane, with a considerably reduced charge and low remnant solvent concentration compared to one fabricated using the conventional method. The membrane had a small average pore size (102 nm) and high porosity (85.1%) for prevention of bacterial contamination. In vivo tests on rats showed that these directly electro spun fibrous membranes produced using the modified electro spinning process supported the good healing of skin bums.
Keywords
nanofibers; electrospinning; wound healing;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002)   DOI   ScienceOn
2 W. E. Teo and S. Ramakrishna, Nanotechnology, 17, R89 (2006)   DOI   ScienceOn
3 D. W. Hutmacher, J. Biomater. Sci., 12, 107 (2001)   DOI   PUBMED   ScienceOn
4 J. Venugopal, L. L. Ma, and S. Ramakrishuna, Tissue Eng., 11, 847 (2005)   DOI   ScienceOn
5 G. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 44, 1426 (2006)   DOI   ScienceOn
6 G. H. Kim, Biomed. Mater., 3, 025010 (2008)   DOI   ScienceOn
7 Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003)   DOI   ScienceOn
8 I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu, Biomacromolecules, 5, 1428 (2004)   DOI   ScienceOn
9 S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett., 90, 144 (2003)
10 G. H. Kim and W. Kim, Appl. Phys. Lett., 89, 013111 (2006)   DOI   ScienceOn
11 R. Kessick, J. Fenn, and G. Tepper, Polymer, 45, 2981 (2004)   DOI   ScienceOn
12 H. A. Pohl, Dielectrophoresis, Cambridge University Press, New York, 1978
13 G. H. Kim and W. Kim, Appl. Phys. Lett., 88, 23310 (2006)
14 G. Viswanathan, S. Murugesan, V. Pushparaj, O Nalamasu, P. M. Ajayan, and R. J. Linhardt, Biomacromolecules, 7, 415 (2006)   DOI   ScienceOn
15 J. Doshi and D. H. Reneker, J. Electrostatics, 35, 151 (1995)   DOI   ScienceOn