• Title/Summary/Keyword: Fiber-optic gyroscope

Search Result 46, Processing Time 0.036 seconds

A digital closed-loop processor with a stabilizer for an open-loop fiber-optic gyroscope (개회로 FOG용 폐회로 신호처리기의 안정화)

  • 김도익;예윤해
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.377-383
    • /
    • 2002
  • An all-digital closed-loop (ADCL) signal processor for an open-loop FOG was developed to replace the analog circuitry of a Digital Phase Tracking (DPT) signal processor with new digital circuitry. When the ADCL signal processor without a stabilizer for fiber phase modulator (FPM) was attached to the FOG, temperature drift of FOG was about 0.26$\mu$rad/$^{\circ}C$, which makes the FOG unusable in medium or higher-grade applications. This drift was due to variations of phase modulation amplitude and phase delay of the FPM. The stabilizer controls its phase modulation amplitude and phase delay by regulating the ratio of harmonics of the FOG output. Thus, the stabilizer reduces the drift of the FOG to negligible.

Principles and Prospects of Sagnac Interferometer Gyroscopes (사냑간섭계 원리를 이용한 자이로의 원리와 발전 전망)

  • Shim, Kyu-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.203-210
    • /
    • 2012
  • Sagnac interferometer gyroscopes can be divided into three large generations using starting points of time or highlights of their research. As the first generational Sagnac interferometer, the ring laser gyroscopes have been studied since the 1960s by laser invention, and as the second generational Sagnac interferometer, the fiber optic gyroscopes have been studied since the 1970s by invention of optical fiber for communication. In the latter half of the 1990s, after having confirmed the wave theory of the atom, studies of atomic interferometers were started for a next generation gyroscope application. This paper discusses the operation principles, application, and future prospects of these three generations of Sagnac gyroscopes.

Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes

  • Choi, Woo-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.237-243
    • /
    • 2011
  • Thermal characteristics, such as diffusivity and temperature induced change in the fiber mode index of rotation sensing fiber coil are critical factors which determine the time varying, thermo-optically induced bias drift of interferometric fiber-optic gyroscopes (IFOGs). In this study, temperature dependence of the transient effect is analyzed in terms of the thermal characteristics of the fiber coil at three different temperatures. By applying an analytic model to the measured bias in the experiments, comprehensive thermal factors of the fiber coil could be extracted effectively. The validity of the model was confirmed by the fact that the extracted values are reasonable results in comparison with well known properties of the materials of the fiber coil. Temperature induced changes in the critical factors were confirmed to be essential in compensating the transient effect over a wide temperature range.

Subtraction of excess noise in a gyroscope employing a high-power erbium-doped fiber source (고출력 Erbium 첨가 광섬유 광원을 사용하는 자이로스코프에서 광원 과잉잡음의 소거)

  • 진영준;박태용;박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.396-400
    • /
    • 1999
  • In the fiber-optic gyroscope employing a high-power erbium-doped fiber source, the source excess noise was subtracted from the gyro output through a single processing to improve the gyroscope sensitivity. As the result, we obtained the reduction of noise by 13.5 dB (electrical) which was measured from the noise floor spectrum when the gyro was modulated with the depth of 1.8 rad. In addition, the random walk coefficient of the gyro output was reduced by a factor of 4~5.

  • PDF

Deadzone Elimination of Closed-Loop Fiber Optic Gyro using Pulse Dithering (펄스 디더링을 이용한 광섬유자이로 불감응영역 제거)

  • Chong, Kyoung-Ho;Do, Jae-Chul;Jo, Min-Sik;Song, Ki-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.789-797
    • /
    • 2009
  • Gyroscope's deadzone is a region where can not detect the rate even though the actual rotation is applied. This paper analyzed the cause of deadzone by modeling/simulation and introduced pulse dithering method to overcome. From the testing of 3-axis fiber optic gyro system using 900m fiber, it confirmed deadzone could be effectively eliminated by combination of three factors, dither amplitude, dither frequency, and gyro loop gain.

The fabrication of Light Source for Fiber Optic Gyroscope (광섬유 자이로스코프용 광원 제작)

  • 정인식;안세경;배정철;최영규;홍창희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.370-373
    • /
    • 2003
  • Superluminescent diodes(SLDs) are the optimum light sources for application in optical measurement systems such as fiber gyroscopes, optical time domain reflectometers, and to short and medium distance optical communication systems. The broadband characteristics of SLDs reduce Rayleigh backscattering noise, polarization noise, and the bias offset due to the nonlinear Kerr effect in fiber gyro systems. In this paper, in order to suppress lasing oscillation, we introduced a laterally tilted SCH(Separate Confinement Heterostructure)-SLD with a window region. An output power of 11mW has been achieved at 200mA injection current at 25$^{\circ}C$. At 120mA, parallel and perpendicular to the junction were 31$^{\circ}$${\times}$38$^{\circ}$.

  • PDF

Suppression of polarization effects in Er-doped fiber source for gyroscope by polarization scrambling (자이로용 Er-첨가 광섬유 광원에서 편광 스크램블링을 이용한 편광효과의 억제)

  • 김택중;진영준;박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.449-453
    • /
    • 2003
  • In a broadband erbium-doped fiber source for fiber optic gyroscope, a pump-polarization scrambling scheme is used to suppress the polarization dependence of the source mean wavelength. The degree of polarization of the pump is reduced to 1.4% by applying proper modulation depth to the polarization modulator where 10 m-long single-mode fiber is wound on a cylindrical PZT. In the case of using the pump-polarization scrambler as well as the output depolarizer, the mean-wavelength variations due to the random change of polarization are measured to be less than our measurement limit of 5 ppm.