• Title/Summary/Keyword: Fiber laser

Search Result 870, Processing Time 0.031 seconds

High speed precision welding using by single mode fiber laser (파이버 레이저에 의한 고속정밀 용접)

  • Park, Seo-Jeong;Lee, Mok-Yeong;Jang, Ung-Seong;Kim, Gi-Cheol;Cheon, Chang-Geun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.94-96
    • /
    • 2005
  • Welding process of ultra thin stainless steel foil was investigated using a single mode Yb-fiber laser with a CW maximum output power 40W. In micro welding, critical power density for keyhole welding was 1 to 2 orders larger higher than in macro-welding due to larger thermal conduction, extremely high speed welding becomes possible.

  • PDF

Fabrication and Output Characteristics of an (18+1)×1 Polarization-maintaining Pump and Signal Combiner for a High-power Fiber Laser (고출력 광섬유 레이저용 (18+1)×1 편광유지 펌프 및 신호광 결합기 제작 및 출력 특성)

  • Lee, Sung Hun;Kim, Ki Hyuck;Yang, Hwan Seok;Cho, Seung Yong;Kim, Seon Ju;Park, Min Kyu;Lee, Jung Hwan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.5
    • /
    • pp.187-192
    • /
    • 2019
  • In this paper a pump combiner, a key component of a high-power fiber laser, was fabricated, and its output characteristics measured using a high-power performance measuring instrument. The $(18+1){\times}1$ pump combiner consists of an optical-fiber bundle of one signal fiber and 18 pump fibers, an output optical fiber, and housing. The signal and output fibers were fabricated using polarization-maintaining optical fiber. By measuring the loss of signal light along the tapering length of the optical-fiber bundle, the tapering length was optimized to 18 mm. Signal-light insertion loss, pump-light transmittance, and polarization extinction ratio of the fabricated $(18+1){\times}1$ pump combiner were measured as 6.5%, 98.07%, and 18.0 dB respectively. The temperature distribution of the pump combiner, at a high power of 2 kW using 18 pump laser diodes, was measured and analyzed using a thermal-imaging camera.

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

Fiber-Optic Interferometric Sensor System for Remote Sensing and Its Application to Pressure Sensing (원격 측정을 위한 간섭형 광섬유 센서 시스템과 그의 압력 센서 응용)

  • Yeh, Yun-Hae;Jung, Hwan-Soo;Lah, Doh-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.172-179
    • /
    • 1997
  • This paper describes a multiplexed-multivariate fiber-optic interferometric sensor system with remote sensing capability. Signal processor of the implemented sensor system is designed as a digital fringe counter that is well adapted to the signal processing of the remote fiber-optic Fabry-Perot interferometric sensor array. By summing up the reported optical data of the optical fiber, a guideline for choosing the optical effect suitable for a specific measurand is presented. As an example, a pressure sensing device that utilizes the strain-optic effect of the optical fiber by attaching it onto a stainless steel diaphragm of which diameter is 4.3 cm, is built and attached to the sensor system. The changes in optical phase difference of the fiber-optic Fabry-Perot interferometric press ure sensor while filling a water tank 2 meters high, was counted by the half-fringe counting signal processor. Test results showed that the measurement error is less than ${\pm}3.6\;cm$ over the measured range of 2 meters.

  • PDF

Solitin Pulse Generation with Mode-Locked Erbium-Doped Fiber Laser Using Nonlinear Amplifying Loop Mirror (Nonlinear Amplifying Loop Mirror를 사용하여 모우드 록킹된 Erbium 첨가 광섬유 레이저에서 발생하는 솔리톤 펄스)

  • 박희갑;임경아
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.142-147
    • /
    • 1995
  • Soliton pulse outputs are generated with figure '8' type erbium-doped fiber laser mode-locked by using a fiber loop mirror. The fiber loop mirror consists of an erbium-doped fiber amplifier at the one end of the loop, and 504 m-long dispersion-shifted fiber as a nonlinear medium. By pumping with a $1.48{\mu}m$ wavelength laser diode and adjusting the polarization controllers inside the loop, soliton pulses are generated with 1574 nm center wavelength and 1.2 nm linewidth. The soliton pulses are found randomly spaced within the fundamental period corresponding to cavity round trip time. The autocorrelation trace shows that the pulse width is 2.4 ps, which is in good agreement with the theoretical prediction. The pulsewidth- bandwidth product is found to be 0.348 which means that the pulses are nearly transform-limited.imited.

  • PDF

Fabrication optimization of Fiber Bragg gratings (광섬유 브래그 격자(Fiber Bragg grating) 제작과 제작 조건에 따른 특성 향상)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1680-1686
    • /
    • 2010
  • Optical fiber Bragg grating to have the lowest transmitivity at 1549.9nm wavelength was fabricated using a Gaussian distributed KrF Eximer laser of 248nm lasing wavelength and a phase mask of 1.072um period. The proper alignment of an optic setup to fabricate fiber gratings was investigated and the reproductivity of the grating fabrication was examined using the obtained optimum fabrication condition in this experiment.

Comparison of temperature dependance between short and long period fiber gratings (단주기 광섬유 격자(Fiber Grating)와 장주기 광섬유 격자의 온도 의존성 비교)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1791-1796
    • /
    • 2011
  • An optical fiber short period grating of 0.7 nm as a 3 dB wavelength linewidth was fabricated using a Gaussian distributed KrF Eximer laser and a phase mask. This grating has temperature dependancy of 0.01 nm/$^{\circ}C$ over the range of -10 $^{\circ}C$ ~ 70 $^{\circ}C$and no difference between temperature directions. An optical fiber long period grating of 14.22 nm as a 3 dB linewidth was also fabricated using a amplitude mask and has dependancy of 0.01 nm/$^{\circ}C$ over the same range.

Polarization-maintained Single-mode 400-W Yb-doped Fiber Laser with 2.5-GHz Linewidth from a 3-stage MOPA System (3단 MOPA 시스템에서 2.5 GHz 선폭을 가지는 편광유지 단일모드 400 W 이터븀 첨가 광섬유 레이저 연구)

  • Park, Young Ho;Youn, Young Seok;Jung, Min Wan;Jun, Changsu;Yu, Bong-Ahn;Shin, Woojin
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In this paper, we report on the high power amplification of a narrow-linewidth Yb-doped polarization-maintained (PM) fiber laser in a 3-stage, all-fiber master oscillator power amplifier (MOPA) system. The linearly polarized single-mode output power was 400 W with an 85% slope efficiency, with a linewidth of 2.5 GHz (full width at half maximum). Furthermore, mitigation of mode instability (MI) has been demonstrated by tightly coiling the gain fiber to a diameter of 11 cm. In addition, methods for higher power scaling are discussed.