• Title/Summary/Keyword: Fiber distribution

Search Result 985, Processing Time 0.031 seconds

Change of Chemical Pulp Fiber Properties with Cellulase Component($C_1$, $C_{x}$) Treatment (CelIulase 구성 요소별 처리에 의한 펄프 섬유의 특성 변화)

  • Kim, Byung-Hyon;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.13-23
    • /
    • 1998
  • Two major cellulase components purified with sephadex G-75 and DEAE sepharose were applied to bleached kraft pulp to inverstigate the change of fiber properties. Cellulose viscosity was very sensitive to $C_x$ component treatment (more than 15% drop was observed) while being little influenced by $C_1$, component (only 2% drop). Fiber fraction longer than 2mm was reduced by $C_x$ treatment while short fiber fraction was increased greatly by more than 15%. There was little change in fiber length distribution by combined treatment of $C_1$ 1 and $C_x$ at equal. In this case, fine contents increased by more than 2.5% at equivalent refining time. WRV and Density were increased as the amount of $C_1$ or $C_x$ treatment was increased. $C_{x}$ was main cause for increasing them. But the effect fell as enzyme dosage.

  • PDF

Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion (흡수에 따른 탄소섬유 강화수지의 파괴거동)

  • Kim, O. G.;Nam, K. W.;Ahn, B. H.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF

Seismic behavior of SFRC shear wall with CFST columns

  • Gao, Dan-Ying;You, Pei-Bo;Zhang, Li-Juan;Yan, Huan-Huan
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.527-539
    • /
    • 2018
  • The use of reinforced concrete (RC) shear wall with concrete filled steel tube (CFST) columns and steel fiber reinforced concrete (SFRC) shear wall has aroused widespread attention in recent years. A new shear wall, named SFRC shear wall with CFST columns, is proposed in this paper, which makes use of CFST column and SFRC shear wall. Six SFRC shear wall with CFST columns specimens were tested under cyclic loading. The effects of test parameters including steel fiber volume fraction and concrete strength on the failure mode, strength, ductility, rigidity and dissipated energy of shear wall specimens were investigated. The results showed that all tested shear wall specimens exhibited a distinct shear failure mode. Steel fibers could effectively control the crack width and improve the distribution of cracks. The load carrying and energy dissipation capacities of specimens increased with the increase of steel fiber volume fraction and concrete strength, whilst the ductility of specimens increased with the increase of steel fiber volume fraction and the decrease of concrete strength.

The Planning of Polyester Fabric Standard Color Collections in Daegu, Gyeongbuk (대구·경북지역 폴리에스테르 직물의 표준색표집 설계)

  • Lee, Kyung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.5 no.4
    • /
    • pp.337-350
    • /
    • 2003
  • Fiber industry is export leading industry that guide national economy development after the 1960s in Korea. But lately, including China and Southeast Asia pursuit, domestic fiber industry is taking serious situation. Various kind methods can be proposed for high value added in fiber industry, the research about color is essential. The importance of color is increasing in modern textile and fashion industry. Color is important factor of textile and fashion industry because color affects strong influence in human's sensitivity. Color expresses by hue, value and chroma but fashion industry is using mainly hue and tone color system. Daegu Gyeongbuk area is domestic maximum syntheic fiber producing district. This study planned the polyester standard color collections for general color management of the polyester industry in Daegu Gyeongbuk. As basic research for this I investigated the color appearance distribution of polyester fabrics in Daegu Gyeongbuk that were produced for the recently 10 years and Japanese polyester color collections "SCOTDIC 2450". Reflect these study finding, in this research planned the usable standard color collections "Hue and Tone Polyester Standard Color 288". This research constructs insufficient domestic color infrastructure and expect that basic role to develop the competitive power for Korean fiber industry.

Research on residual stress in SiCf reinforced titanium matrix composites

  • Qu, Haitao;Hou, Hongliang;Zhao, Bing;Lin, Song
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.173-184
    • /
    • 2014
  • This study aimed to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites. The analytical solution of residual stress field distribution was obtained by using coaxial cylinder model, and the numerical solution was obtained by using finite element model (FEM). Both of the above models were compared and the thermal residual stress was analyzed in the axial, hoop, radial direction. The results indicated that both the two models were feasible to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites, because the deviations between the theoretical calculation results and the test results were less than 8%. In the titanium matrix composites, along with the increment of the SiC fiber volume fraction, the longitudinal property was improved, while the equivalent residual stress was not significantly changed, keeping the intensity around 600 MPa. There was a pronounced reduction of the radial residual stress in the titanium matrix composites when there was carbon coating on the surface of the SiC fiber, because carbon coating could effectively reduce the coefficient of thermal expansion mismatch between the fiber and the titanium matrix, meanwhile, the consumption of carbon coating could protect SiC fibers effectively, so as to ensure the high-performance of the composites. The support of design and optimization of composites was provided though theoretical calculation and analysis of residual stress.

Fabrication of Polycarbonate Nano Fibers Using Electrospinning (전기방사법을 이용한 Polycarbonate 나노 섬유 제조)

  • Kim Giltae;Park Sangkyoung;Lee Jaekeun;Ahn Youngchull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.512-518
    • /
    • 2005
  • Polymeric fibers with nanometer-scale diameters are produced by electrospinning. When the electrical forces at the surface of a polymer solution or melt overcome the surface tension then electrospinning occurs. Polycarbonate has been electrospun. Electrospun fibers are observed by scanning electron microscopy and transmission electron microscopy. The surface morphology of e-spun fiber has been studied by many variables that are involved in different polymer concentrations, solvent mixing ratios and ambient parameters. The average diameters of the electrospun fibers range from 200 nm to 4,570 nm when the PC concentration is decreasing from 15.5\;wt{\%}\;to\;25\;wt{\%}.$ The higher concentration of the polymer solution makes the fibers thicker due to preventing the fiber stretching. With respect evaporation effects, the solvent mixing ratios cause significant changes of the fiber size distribution. As a matter of fact the fiber diameter steadily increases with increasing amount of DMF until the solvent mixture is at THF:DMF ratio of 60:40.

Evaluation of direct tensile strength for ultra-high-performance concrete using machine learning algorithms

  • Sanghee Kim;Woo-Young Lim
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.367-378
    • /
    • 2024
  • This study evaluates the direct tensile strength of ultra-high-performance concrete (UHPC) using tests. A total of 45 dogbone-shaped specimens are tested, with the test variables being the fiber volume fraction and notch length. The test results showed that the material properties of UHPC were largely dependent on the fiber volume fraction and compressive strength. When steel fibers with more than 1% fiber volume fraction are mixed in the manufacturing of UHPC, the tensile strength can be more than twice that of plain UHPC. In addition, the incorporation of steel fibers enabled the significant improvement of the initial cracking strength. However, the effect of the notch length on the tensile behavior was insignificant. An assessment of the direct tensile strength is conducted using machine-learning algorithms (ML). For evaluation of the direct tensile strength of UHPC using ML, a total of 98 test data, including 53 data from other research works and 45 data from this experimental program, were collected. In total, 67 data with a 70% confidence interval on a normal distribution curve were selected, with 47 data among 67 used for ML training and 20 data used for ML testing. As a result, the machine-learning algorithm with a steel fiber volume fraction predicted that the tensile strength has an average of 0.98 and the lowest values of regression evaluation metrics among analytical and ML-based models. It is considered that an ML-based model can help to predict a more accurate tensile strength of UHPC.

Isogeometric micromechanical damage analysis of fiber-reinforced composites by presenting a single-patch framework

  • Ali Hosseinzadeh;Mohammad Reza Forouzan;Mehdi Karevan
    • Advances in Computational Design
    • /
    • v.9 no.3
    • /
    • pp.167-186
    • /
    • 2024
  • Implementing isogeometric methodology in micromechanical analysis of composite materials has been recently investigated in some research studies. These research studies are based on multi-patch modeling which requires coupling constraints among the NURBS patches, and the domain decomposition effort in model preparation stage. This approach has been employed for small representative volume elements (RVE). However, small RVE neglects some characteristics of microstructure and larger one increases the number of required NURBS patches in multi-patch framework. As a step forward, this research presents a framework which simulates the RVE using a single NURBS patch. the presented framework has been used to include the effects of fiber distribution and porosities in simulated RVEs. In this regard, heterogeneity and 2D/3D voids within RVE are modeled only by inserting knots and modifying the control points. In addition to beneficial advantages of isogeometric methodology for RVE-based models, this framework simplifies isogeometric modeling of more complicated RVEs by eliminating the domain decomposition stage and avoiding coupling constraints between non-matching patches. The performance of the presented model has been verified by performing micromechanical damage analysis on several generated RVEs of unidirectional fiber-reinforced composites, in which matrix and fiber/matrix interfaces experience damage. The predicted damage evolutions under different loading conditions are in excellent agreement with prior experimental and numerical studies that demonstrate the veracity of the presented model.

Dispersion-managed Optical Links with the Uniform Distributions of SMF Lengths and Residual Dispersion Per Span (SMF 길이와 중계 구간 당 잉여 분산의 분포가 균일한 분산 제어 광전송 링크)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.161-166
    • /
    • 2016
  • In high capacity and long haul optical communication systems, signal distortion is induced by chromatic dispersion and nonlinear effects of optical fibers. Dispersion management (DM) combining with mid-spans spectral inversion (MSSI) is one of the various techniques for overcoming this drawback. The most simple configuration of DM link is obtained by uniformly distributing the lengths of single mode fiber (SMF) and residual dispersion per span (RDPS) over whole fiber spans consisted of optical link. In this paper, the system performances in the uniformly distributed DM link combined with MSSI are assessed as a function of the number of fiber spans, because the system performances in this configuration are used as the significant performance criterion in other link configurations, such as the artificial distribution or the random distribution of SMF lengths and RDPS.

Theoretical Prediction of Dynamic Elastic Moduli and Attenuation Properties of Fiber-Reinforced Composite Materials (섬유강화 복합재료의 동탄성계수 및 감쇠특성의 이론적 예측)

  • 김진연;이정권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2328-2339
    • /
    • 1992
  • The propagation of coherent time-harmonic elastic L-and SV-waves is studied in a medium with random distribution of cylindrical inclusions. The purpose of the research is to characterize the dynamic elastic moduli and the attenuation properties of fiber-reinforced composite materials. The cylindes representing the fibers are assumed to be distributed in parallel with each other and the direction of incident waves are normal to the cylinder axes. A multiple scattering formula using the single scattering coefficients in conjunction with the Lax's quasicrystalline approximation is derived from which the dispersion relation for such medium is obtained. In order to formulate the multiple scattering interaction between cylinders, the pair correlation functions are generated by the Monte Carlo simulation technique. From the numerically evaluated complex wavenumbers, the propagation speed of the average wave, the coherent attenuation and the effective elastic moduli are presented as functions of frequency and fiber volume fraction.