• Title/Summary/Keyword: Fiber Contents

Search Result 1,584, Processing Time 0.029 seconds

A Study on the Engineering Properties of Carbon Fiber Reinforced Cement Composites(I) (탄소섬유 보강시멘트 복합체(CFRC)의 공학적 특성에 관한 실험적 연구(I))

  • 박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.31-34
    • /
    • 1989
  • In order to discuss the engineering properties of carbon fiber reinforced cement composites with silica fume and silica powder, experimental studies in the CFRC were carried out. The types of fiber used which are in CFRC are PAN-based carbon fiber and Pitch-based carbon fiber. To examine the effects of types, lengths, contents of carbon fiber and matrices, their properties of fresh and fardened CFRC were tested. According to the test results, the process technology of light-weight CFRC is developed and their potimum mix proportions are successfully proposed. Also, it can be concluded that the reinforcement of carbon fiber is considerably effective in improving tensile strenghth, flexural strength, toughness and loss of shrinkage of CFRC compared with conventional mortar.

  • PDF

Mechanical Behavior of Steel Fiber Reinforced Lightweight Polymer Concretese (강섬유보강 경량 폴리머 콘크리트의 역학적 거동)

  • Youn, Joon-No;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.63-72
    • /
    • 2005
  • In this study, the physical and mechanical properties of steel fiber reinforced lightweight polymer concrete were investigated experimentally with various steel fiber contents. All tests were performed at room temperature, and stress-strain curve and load-deflection curve were plotted up to failure. The unit weight of steel fiber reinforced lightweight polymer concrete was in the range of $1,020{\sim}1,160\;kg/m^3$, which was approximately $50\%$ of that of the ordinary polymer concrete, The compressive strength, splitting tensile strength, flexural toughness and flexural load-deflection curves after maximum load were shown with increase of steel fiber content. The stress-strain curves of steel fiber reinforced lightweight polymer concrete were bilinear in nature with a small transition zone, Based on these results, steel fiber reinforced lightweight polymer concrete can be widely applied to the polymer composite products.

A Study on the Strength and Drying Shrinkage Crack Control Properties of Polypropyl (폴리프로필렌 합성섬유보강 콘크리트의 강도 특성 및 건조수축균열제어 특성에 관한 연구)

  • 오병환;백상현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.146-152
    • /
    • 1996
  • Polypropylene fiber reinforced mortar and concrete as civil material or architectural material have been used in America and British etc, and have been researched. Polypropylene fibers have many advantages in many points ; in economical costs, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. This study has been performed to obtain the properties of polypropylene fiber reinforced concrete such as compressive strength, flexural strength, toughness, slump, drying shrinkage crack and drying shrinkage characteristics. The test variables are fiber contents, fiber length, fiber types, and so on. From the results of this study, we can expect the effects of the admixtures of polypropylene fiber about strength and drying shrinkage properties in concrete and mortar.

  • PDF

Alkali Pulping Charactics of Moso Bamboo(Phyllostachys pubescens Mazel) with Various Ages (맹종죽의 죽령별 알칼리 펄프화 특성)

  • Yoon, Seung-Lak;Jo, Hyun-Jin;Park, Byung-Su;Kang, Ha-Young;Kang, Kyu-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.3 s.116
    • /
    • pp.29-37
    • /
    • 2006
  • To use bamboo in the pulp industry, the anatomical characteristics of 60-day-old, 1-year-old, 2-year-old, and 3-year-old moso bamboo (Phyllostachys pubescens Mazel), and the characteristics of fiber and sheet of alkali pulp made of moso bamboo were investigated. Moso bamboo is composed of metaxylens and parenchyma cells in the inner part of the wall, and thick-walled small bundle sheathes near the outer walls. Moso bamboo showed the heterogeneity in anatomical structure. The longest fibers were shown in the middle part, and the widest width in the inner part. The lignin contents were 14.4% in 60-day-old bamboo, which was not lignified yet. The lignin contents in bamboo above 1 year were approximately 35%. The yields of alkali pulp of moso bamboo were in the range between 41 and 47%, and the yields tend to decrease with the increase of ages. The lignin contents of 60-day-old bamboo were 2.1% and those of bamboo above 1 year showed approximately 4% to 5% increment. The length, width, and curl index of fiber in alkali pulp appeared to be similar in all ages. However, coarseness increased slightly with the increase of bamboo ages. The distribution of long fiber was shown much in 60-year-old bamboo. The optical and mechanical properties of moso bamboo tended to decrease with the increase of bamboo age.

Effect on the Emulsification Stability and Quality of Emulsified Sausages Added with Wanggasi-Chunnyuncho (Opuntia humifusa f. jeollaensis) Fruit Powders

  • Jeong, Yiji;Han, Youngsil
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.953-965
    • /
    • 2019
  • In this study, the Opuntia humifusa f. jeollaensis (Wanggasi-Chunnyuncho) fruit (WCF) was used as a source of viscous dietary fiber and color pigmentation in sausage production to improve quality characteristics, including cooking loss and emulsion stability. Control and treatment sausages were formulated with 0%, 1%, 5%, and 10% WCF powder, respectively, and the following quality measures were investigated: general composition, fiber content, cooking loss, emulsion stability, chromaticity, pH, texture, and sensory properties. The moisture, dietary fiber, and ash contents showed increasing trends (all p<0.05) with increasing concentrations of fruit powder. Conversely, crude protein and crude fat contents exhibited decreasing trends with increasing fruit powder concentrations (p<0.05). Moreover, both the moisture and dietary fiber contents affected cooking loss, water retention capacity, and the sausage texture, causing the cooking loss to decrease, while the water and oil retention capacity increased (p<0.05) with increasing concentrations of WCF powder. Furthermore, hardness exhibited a significant decreasing trend as the concentration of WCF powder increased (p<0.05). This finding suggested that both dietary fiber and viscous materials, along with the protein and moisture content, affected the product hardness. In addition, sensory evaluation of the WCF powder groups showed better results than did the control group, and the strongest results obtained for the group containing 5% fruit powder (p<0.05). Therefore, this study suggests that WCF powder improves the quality of emulsified sausages and can potentially be applied as a naturally-derived additive.

Dietary Fiber Contents and Physical Properties of Wild Vegetables (산채류의 식이섬유 함량과 물리적 특성)

  • 박종숙;이원종
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.120-124
    • /
    • 1994
  • Nine wind vegetables were analyzed for moisture, ash, crude protein, crude lipid and dietary fiber. Wild vegetables contained 33-53% of dietary fiber on a dry weight basis. Dalle (Allium monanthum) contained 49% total dietary fiber and 22% soluble dietary fiber and dodok(Codonopsis lanceolata) contained 55% total dietary fiber and 21% soluble dietary fiber. Wild 8% more dietary fiber than cultivated one. Water holding capacities of wild vegetables were higher than commercial wheat bran and soy fiber, but lower in oil absorption. When wild dodok and dalle were wet milled by blade grinding before sieving the dietary fiber content in dodok was increased from 55 to 83 % with increasing the dietary fiber content in dalle form 49% to 69%.

  • PDF

The Experimental Study on Engineering Properties of Fiber - Reinforced Soil (섬유혼합 보강토의 공학적 특성에 관한 실험연구)

  • 조덕삼;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.107-120
    • /
    • 1995
  • The purpose of this study is to investigate the effects of fiber on engineering properties of Fiber-Reinforced Soil. Engineering properties of soil reinforced with discrete randomly oriented inclusion depend on soil density, particle size, grading, fiber length, tensile strength and stiffness of fiber, mixing ration of fiber, confining stress, etc.. in this paper, the influence of fiber shape, fiber length, fiber diameter, fiber content, cement content and curing duration on engineering characteristics(compaction, shear & permeability) were evaluated for typical soils produced from construction works through uniaxial compression tests and triaxial compression tests. From the experimental results, it was also investigated if there is an optimal range of fiber lengths and fiber contents for the tested soils and tested mono-filament fibers.

  • PDF

Productivity and Nutritive Values of Different Fractions of Oil Palm (Elaeis guineensis) Frond

  • Islam, M.;Dahlan, I.;Rajion, M.A.;Jelan, Z.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1113-1120
    • /
    • 2000
  • Productivity, nutrient contents, in vitro gas production and in sacco degradability of different fractions and whole OPF were determined to assess the feeding value of OPF as a ruminant feed. An in vivo digestibility trial was also carried out using goat. Freshly harvested OPF was randomly collected, partitioned and weighed. An OPF from 21 years older palm weighed 13.4 kg and the annual fresh matter yield of petiole, leaflet and midrib was 46.5, 11.8 and 3.4 ton/ha, respectively. Leaflet contained 439, 926, 698, 501, 168, 196, 748 and 52 (g/kg) of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose (CE), hemicellulose (HC), total carbohydrate (TC) and non fiber carbohydrate (NFC), respectively. Petiole contained lower (p<0.01) DM, CP and EE contents than leaflet. Organic matter, CE and TC contents were higher (p<0.01) in petiole compared to leaflet. Silica and lignin contents were highest (p<0.01) in midrib followed by leaflet, whole OPF and least in petiole. The Ca, P, Na, K and Mg contents (g/100 g DM) of leaflet were 0.529, 0.182, 0.039, 0.876, and 0.168, respectively. In vitro DM digestibility (g/100 g) at 48 h of leaflet, petiole and midrib was 32.7, 38.7 and 30.2, respectively. The in sacco DM degradation (g/100 g) at 48 h of leaflet was higher than that of whole OPF, petiole and midrib. The in vivo digestibility of DM, OM, CP and ADF of whole OPF was 52, 56, 43 and 26%, respectively. It can be concluded that leaflet is the most nutritious fraction of OPF and midrib is the least. The nutrient content and digestibility of the whole OPF showed that OPF could be an alternative roughage source for ruminant diets.

Spatting and Fire Enduring Properties of High Strength RC Column Subjected to Axial Load Depending on Fiber Contents (중심 축하중을 받는 고강도 RC기둥의 섬유 혼입량에 따른 폭열 및 내화 성상)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Jae-Sam;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.83-90
    • /
    • 2006
  • This paper investigates experimentally the fire resistance performance and spatting resistance of high performance reinforced concrete column member subjected to fire containing polypropylene fiber(PP fiber) and cellulose fiber(CL fiber). An increase in PP fiber and CL fiber contents, respectively resulted in a reduction of fluidity due to fiber ball effect. Air content is constant with m increase in fiber content. Compressive strength reached beyond 50 MPa. Based on fire resistance test, severe failure occurred with control concrete specimen, which caused exposure of reinforcing bar. No spall occurred with specimen containing PP fiber. This is due to the discharge of internal vapour pressure. Use of CL fiber superior to control concrete in the side of spatting resistance, localized failure at comer of specimen was observed. Corner of specimen had deeper neutralization than surface of specimen. Specimen containing PP fiber had the least damaged area due to spatting. Neutralization depth ranged between 6 and 8 mm Residual compressive strength of specimen containing PP fiber maintained 40%, which is larger than control concrete with 20% of residual strength. Specimen containing CL fiber had 25% or residual strength.

Studies on Composites Using Wood and Nonwood Fibers - Effects of Polypropylene Fiber Length and Process Variables - (목질(木質)과 비목질계(非木質系) 섬유(纖維)를 활용한 복합재(複合材) 연구(硏究) - 폴리프로필렌의 섬유장(纖維長)과 공정변수(工程變數)의 영향(影響)을 중심(中心)으로 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.33-44
    • /
    • 1997
  • This study was executed to examine the effects of polypropylene fiber length and process variables of the composites made from wood fiber and nonwood fiber mixed formulations. As a nonwood fiber the polypropylene with 3 denier thickness of tow condition was selected and cut into each length of 0.5, 1.0, 1.5, 2.0 and 2.5cm to mix with wood fiber. And also western hemlock wood fiber for medium density fiberboard was prepared. First, to decide an adequate polypropylene mixing fiber length, the composites of 1.0g/$cm^3$ density were made from 10% polypropylene fiber by each of five lengths and 90% western hemlock fiber mixed formulations. Thereafter as the experiments of process variable, the composites applied with adequate polypropylene fiber length(1.5cm) were made from 4 density levels (0.6, 0.8, 1.0, 1.2g/$cm^3$). 3 mixed formulations of wood fiber to polypropylene fiber(95 : 5, 90 : 10, 85 : 15), and 3 mat moisture contents(5, 10, 20%). According to the results and discussions it was concluded as follows ; The physical and mechanical properties were shown improved tendency. as polypropylene fiber length was increased in the range from 0.5 to 1.5cm, but shown decreasing tendency from 2.0 to 2.5 cm. Accordingly, it was shown that polypropylene fiber length is limited to 1.5cm or less length in mixing wood fiber and polypropylene fiber by turbulent air mixing process. As the densities of wood fiber-polypropylene fiber composites were increased, the physical and mechanical properties were clearly improved. Also they were shown significantly increasement statistically between densities respectively. In the mixed formulations, physical and mechanical properties were shown only slightly improvement, as they changed from 95 : 5 to 85 : 15 in wood fiber to polypropylene fiber. Despite of increasement of mat moisture content, mechanical properties were not improved significantly but physical properties were improved somewhat in wood fiber-polypropylene fiber composites.

  • PDF