• Title/Summary/Keyword: Ferritic steel

Search Result 246, Processing Time 0.025 seconds

Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting

  • Qiu, Guo-xing;Wei, Xu-li;Bai, Chong;Miao, De-jun;Cao, Lei;Li, Xiao-ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2376-2385
    • /
    • 2022
  • Two groups of oxide dispersion-strengthened reduced-activation ferritic/martensitic steels (A and B) were prepared by adding Y, Ti, and Zr into steels through vacuum induction melting to investigate the inclusions, microstructures, mechanical properties of the alloys. Results showed that particles with Y, Ti, and Zr easily formed. Massive, Zr-rich inclusions were found in B steel. Density of micron inclusions in A steel was 1.42 × 1014 m-3, and density of nanoparticles was 3.61 × 1016 m-3. More and finer MX carbides were found in steel tempered at 650 ℃, and yield strengths (YS) of A and B steel were 714±2 and 664±3.5 MPa. Thermomechanical processing (TMP) retained many dislocations, which improved the mechanical properties. YSs of A and B treated by TMP were 725±3 and 683±4 MPa. The existence of massive Zr-rich inclusions in B steels interrupted the continuity of the matrix and produced microcracks (fracture), which caused a reduction in mechanical properties. The presence of fine prior austenite grain size and inclusions was attributed to the low DBTTs of the A steels; DBTTs of A650 and A700 alloy were -79 and -65 ℃. Tempering temperature reduction and TMP are simple, readily useable methods that can lead to a superior balance of strength and impact toughness in industry applications.

An optimized condition for corrosion protection of Type 304 Films prepared by unbalanced magnetron sputtering in 3.5% NaCl solution

  • Yoo, Ji-Hong;Ahn, Seung-Ho;Kim, Jung-Gu;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.465-474
    • /
    • 2001
  • Type 304SS coatings were performed at 200$\square$ onto AISI 1045 carbon steel substrate using unbalanced magnetron sputtering (UBMS) with an austenitic AISI 304 stainless steel (SS) target of 100mm diameter. The total deposition pressure in the active Ar gas was 2$\times$10$^{-3}$ Torr. Coatings were done at various target power densities and bias voltages. Chemical compositions of metallic elements of the coatings were measured by energy dispersive X-rays spectroscopy (EDS). The structure and the morphology of Type 304SS coatings were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Corrosion properties of the coated specimens were examined using electrochemical polarization measurements and electrochemical impedance spectroscopy in a deaerated 3.5% NaCl solution. The porosity rate was obtained from a comparison of the dc polarization resistance of the uncoated and coated substrates. Scratch adhesion testing was used to compare the critical loads for different coatings. XRD results showed that the sputtered films exhibit a ferritic b.c.c. $\alpha$-phase. Potentiodynamic polarization curves indicated that all samples had much higher corrosion potential and better corrosion resistance than the bare steel substrate. The corrosion performance increased with increasing power density and the adhesion was enhanced at the bias voltage of -50V. An improvement in the corrosion resistance can be obtained with a better coating adhesion. Finally, an optimized deposition condition for corrosion protection was found as $40W/cm^2$ and -50V.

  • PDF

Effect of Isothermal Transformation Heat-treatment Time on Cold Workability of STS 430 Stainless Steel after High Temperature Gas Nitriding (고온 가스질화 된 STS 430 스테인리스강의 냉간 가공성에 미치는 항온변태 열처리 시간 변화의 영향)

  • Kim, J.M.;Hyun, Y.K.;Song, S.W.;Kim, G.D.;Son, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • This study is to investigate the phase changes and cold workability after isothermal transformation at $780^{\circ}C$ by using the high temperature gas nitrided (HTGN) STS 430 ferritic stainless steel specimens. The phase diagram of STS 430 steel obtained by calculation showed that the phase appeared at $1100^{\circ}C$ showed as ${\alpha}+{\gamma}{\rightarrow}{\gamma}{\rightarrow}{\gamma}+Cr_2N{\rightarrow}{\gamma}+Cr_2N+CrN$ with increasing nitrogen concentration. Also, the transformation of ${\gamma}{\rightarrow}Cr_2N$ during heat treatment isothermally at $780^{\circ}C$, nitrogen pearlite with lamellar type was fully formed at the nitrogen permated surface layer for 10 hrs. However, this transformation was not completed for 1 hr, resulting nitrogen pearlite plus martensite. The cold rolled specimen of isothermally transformed at $780^{\circ}C$ for 10 hrs after high temperature gas nitriding decreased the layer thickness of nitrogen pearlite inducing the deformation of hard $Cr_2N$ phase. the dissolution rate of $Cr_2N$ phase increased rapidly with increasing cold rolling ratio. Specimens with the microstructure of nitrogen pearlite (isothermally transformed at $780^{\circ}C$ for 10 hrs) were possible to cold rolling without crack formation. However, the mixed structures of nitrogen pearlite + martensite (isothermally transformed at $780^{\circ}C$ for 1 hr) were impossible to cold deformation without cracking.

The Effect of Oxide Compound on Electrical Resistivity and Oxidation Stability in High-temperature for Ferritic P/M Stainless Steel (산화물 혼합상이 페라이트계 P/M스테인리스강의 고온산화 및 전기저항 안정성에 미치는 영향)

  • Park, Jin-Woo;Ko, Byung-Hyun;Jung, Woo-young;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.240-246
    • /
    • 2016
  • In order to improve the high-temperature oxidation stability, sintered 434L stainless steel is studied, focusing on the effect of the addition of metallic oxides to form stable oxide films on the inner particle surface. The green compacts of Fecralloy powder or amorphous silica are added on STS434L and oxidized at $950^{\circ}C$ up to 210 h. The weight change ratio of 434L with amorphous silica is higher than that of 434L mixed with Fecralloy, and the weight increase follows a parabolic law, which implies that the oxide film grows according to oxide diffusion through the densely formed oxide film. In the case of 434L mixed with Fecralloy, the elements in the matrix diffuse through the grain boundaries and form $Al_2O_3$ and Fe-Cr oxides. Stable high temperature corrosion resistance and electrical resistivity are obtained for STS434L mixed with Fecralloy.

Development of Creep Properties Evaluation Technique for Steel Weldment of Power Plant (발전설비 강 용접부의 크리프 특성 평가 기술 개발)

  • Lee, Dong-Hwan;Jeoung, Young-Hun;Baek, Seung-Se;Ha, Jeong-Soo;Song, Gee-Hook;Lee, Song-In;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.180-185
    • /
    • 2001
  • In the life assessment for plant structural component, the research on deterioration of toughness and material properties occurred in weldments has been considered as very important problems. In general, the microstructures composed in weldments are hugely classified with weld metal(W.M), fusion line(F.L), heat affected zone(HAZ), and base metal(B.M). It has been reported that the creep characteristics on weldments having variable microstructures could be unpredictably changed. Furthermore, it is also known that HAZ adjacent to F.L exhibits the decreased creep strength compared to those in base or weld metals, and promotes the occurrence of Type III and Type IV cracking due to the growth of grains and the coarsening carbides precipitated in ferritic matrix by welding and PWHT processes. However, the lots of works reported up to date on creep damage in power plant components have been mostly conducted on B.M and the creep properties on a localized microstructures in weldments have not as yet been throughly investigated. In this paper, for various microstructures such as coarse grain HAZ(CGHAZ), W.M and B.M in X20CrMoV121 steel weldment, the small punch-creep(SP-Creep) test using miniaturized specimen(t=0.5mm, 0.25mm) is performed to investigate a possibility for creep characteristics evaluation.

  • PDF

Effect of Peak Temperature on the Grain Growth in Simulated HAZ of Cr-Mo-V Steel(T24) (Cr-Mo-V강(T24)의 재현 HAZ의 결정립 성장에 미치는 피크온도의 영향)

  • Lee, Kyong-woon;Lee, Seong-hyeong;Na, Hye-sung;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.55-61
    • /
    • 2016
  • Recently developed ferritic heat resistance steel, T24 was used to evaluate microstructure characteristics of simulated heat affected zone. Also, correlation between the prior austenite grain size and amount of $M_{23}C_6$ carbide dissolution was discussed. With the increasing of peak temperature, Grain size steadily increased up to $1050^{\circ}C$ and then rapidly increased at $1150^{\circ}C$. Of the peak temperature $950{\sim}1050^{\circ}C$, amounts of $M_{23}C_6$carbide dissolution are low. But Most of $M_{23}C_6$ carbide that is inhibited grain growth were dissolved above $1050^{\circ}C$ and decreased volume fraction of carbide. This indicates that grain growth may be achieved through dissolution of carbide in the base material. As of welding, due to very rapid heating rate, $M_{23}C_6$ carbide exists above equilibrium solution temperature that is $800^{\circ}C$, even at $1050^{\circ}C$. So, It was confirmed that close correlation between carbide dissolution in the base material and grain growth. Calculated grain size has a linear relationship with peak temperature, on the other hand, measured grain size discontinuously increased between $950{\sim}1050^{\circ}C$ and above $1050^{\circ}C$. Grain size of heat affected zone at $1350^{\circ}C$ peak temperature showed maximum 67um and minimum 4um. Also, The number of side showed 3 to 10.

Characterization of the High-temperature Isothermal Aging in USC Ferritic Steel Using Reversible Permeability (가역투자율을 이용한 초초임계압 페라이트기 강의 고온 등온열화 평가)

  • Kim, Chung-Seok;Ryu, Kwon-Sang;Nahm, Seung-Hoon;Lee, Seung-Seok;Park, Ik-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.100-105
    • /
    • 2009
  • The high-temperature isothermal aging is studied in ultra-supercritical steel, which is attractive to the next generation of power plants. The effects of microstructure on reversible permeability are discussed. Isothermal aging was observed to coarsen the tempered carbide ($Cr_{23}C_6$), generate the intermetallic ($Fe_2W$) phase and grow rapidly during aging. The dislocation density also decreases steeply within lath interior. The dynamic coercivity, measured from the peak position of the reversible permeability profile decreased drastically during the initial 500 h aging period, and was thereafter observed to decrease only slightly. The variation in dynamic coercivity is closely related to the decrease in the number of pinning sites, such as dislocations, fine precipitates and the martensite lath.

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.

Self-sustainable Operation of a 1kW class SOFC System (1kW급 고체산화물 연료전지 발전시스템 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 single cells and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen after pre-treatment process, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water.

  • PDF

Assessment of $13{\sim}19%Cr$ Ferritic Oxide Dispersion Strengthened Steels for Fuel Cladding Applications

  • Lee, J.S.;Kim, I.S.;Kimura, A.;Choo, K.N.;Kim, B.G.;Choo, Y.S.;Kang, Y.H.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.911-912
    • /
    • 2004
  • 1. Cathodic hydrogen charging considerably reduced the tensile ductility of ODS steels and a 9Cr-2W RMS. The hydrogen embrittlement of ODS steels was strongly affected by specimen sampling orientation, showing significant embrittlement in the T-direction. This comes from the microstructural anisotropy caused by elongated grains of ODS steels in L-direction. 2. The ODS steels contained a higher concentration of hydrogen than 9Cr-2W RMS at the same cathodic charging condition, and the critical hydrogen concentration required to transition from ductile to brittle fracture was in the range of $10{\sim}12$ wppm, which approximately 10 times larger than that of a 9Cr-2W martensitic steel. 3. The ODS steels showed a typical ductile to brittle transition behavior and it strongly depended on the specimen sampling direction, namely L- and T-direction. In T-direction, the SP-DBTT was about 170 L, irrespective of the ODS materials, and L-direction showed a lower SP-DBTT than that of T-direction.

  • PDF