Browse > Article
http://dx.doi.org/10.4283/JKMS.2009.19.3.100

Characterization of the High-temperature Isothermal Aging in USC Ferritic Steel Using Reversible Permeability  

Kim, Chung-Seok (Engineering Science and Mechanics, Pennsylvania State University)
Ryu, Kwon-Sang (Korea Research Institute of Standard and Science)
Nahm, Seung-Hoon (Korea Research Institute of Standard and Science)
Lee, Seung-Seok (Korea Research Institute of Standard and Science)
Park, Ik-Keun (Mechanical Engineering, Seoul Nation University of Technology)
Abstract
The high-temperature isothermal aging is studied in ultra-supercritical steel, which is attractive to the next generation of power plants. The effects of microstructure on reversible permeability are discussed. Isothermal aging was observed to coarsen the tempered carbide ($Cr_{23}C_6$), generate the intermetallic ($Fe_2W$) phase and grow rapidly during aging. The dislocation density also decreases steeply within lath interior. The dynamic coercivity, measured from the peak position of the reversible permeability profile decreased drastically during the initial 500 h aging period, and was thereafter observed to decrease only slightly. The variation in dynamic coercivity is closely related to the decrease in the number of pinning sites, such as dislocations, fine precipitates and the martensite lath.
Keywords
reversible permeability; dynamic coercivity; ultra-super critical steel; isothermal aging;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 고재귀, 한국자기학회지, 17, 232 (2007)   과학기술학회마을   DOI
2 K. S. Ryu, S. H. Nahm, J. S. Park, K. M. Yu, Y. B. Kim, and D. Son, J. Magn. Magn. Mater., 20, 445 (2000)
3 박수영, 유권상, 이재경, 박종서, 한국자기학회지, 16, 211 (2006)   과학기술학회마을   DOI
4 B. D. Cullity, Introduction to Magnetic Materials, 2nd Ed., (Addision-Wesley, New York, USA, 1972)
5 J. D. Verhoeven, Fundamentals of Physical Metallurgy, (John Wiley & Sons, New Yrok, USA, 1975)
6 S. Takahashi, J. Echigoya, and Z. Motoki, J. Appl. Phys., 87, 805 (2000)   DOI   ScienceOn
7 M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi, and K. Kanazawa, Int. J. Fatigue, 28, 300 (2006)   DOI   ScienceOn
8 P. J. Szabo, Mater. Sci. Eng. A, 387-389, 710 (2004)   DOI   ScienceOn
9 G. Dobmann, M. Kroning, W. Theiner, H. Willems, and U. Fiedler, Nucl. Eng. Design, 157, 137 (1995)   DOI   ScienceOn
10 M. Yoshino, H. Tanabe, T. Sakamoto, N. Suzuki, and Y. Yaji, Mat. Sci. Forum, 210-213, 45 (1996)   DOI
11 Fujita, J. Iron Steel Inst. Jpn., 76, 1053 (1990).
12 C. S. Kim and S. I. Kwun, Mater. Trans., 48, 3028 (2007)   DOI   ScienceOn
13 J. W. Byeon, C. S. Kim, and S. I. Kwun, Phys. Stat. Sol. (b), 241, 1756 (2004)   DOI   ScienceOn
14 D. C. Jiles, J. Phys. D-Appl. Phys., 21, 1196 (1988)   DOI   ScienceOn
15 C. S. Kim, I. K. Park, and K. Y. Jhang, NDT and E Inter., 42, 204 (2009)   DOI   ScienceOn
16 F. Abe, Curr. Opin. Solid State Mater. Sci., 8, 305 (2004).   DOI   ScienceOn
17 F. Abe, Mater. Sci. Eng. A, 387-389, 565 (2004).   DOI   ScienceOn
18 J. W. Shilling and W. A. Soffa, Acta Metall., 26, 413 (1978)   DOI   ScienceOn
19 L. Korcakova, J. Hald, and M. Somers, Mater. Character., 47, 111 (2001)   DOI   ScienceOn
20 이태규, 노태환, 한국자기학회지, 17, 128 (2007)   과학기술학회마을   DOI
21 S. Gupta, A. Ray, and E. Keller, Inter. J. Fatigue, 29, 1100 (2007)   DOI   ScienceOn
22 A. Orlova, J. Bursak, K. Kucha ova, and V. Skleni ka, Mater. Sci. Eng. A, 245, 39 (1998)   DOI   ScienceOn
23 S. Luxenburger and W. Arnold, Ultrasonics, 40, 797 (2002)   DOI   ScienceOn