• Title/Summary/Keyword: Fermented Red Ginseng Extract

Search Result 45, Processing Time 0.03 seconds

Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts

  • Irfan, Muhammad;Lee, Yuan Yee;Lee, Ki-Ja;Kim, Sung Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.387-395
    • /
    • 2022
  • Background: Fermentation may alter the bioavailability of certain compounds, which may affect their efficacy and pharmacological responses. This study investigated the antiplatelet effects of red ginseng extract (RGE) and fermented red ginseng extract (FRG). Methods: A rodent model was used to evaluate the antiplatelet and antithrombotic effects of the extracts. Rats were orally fed with human equivalent doses of the extracts for 1 week and examined for various signaling pathways using standard in vivo and ex vivo techniques. Light transmission aggregometry was performed, and calcium mobilization, dense granule secretion, integrin αIIbβ3-mediated signaling molecules, cyclic nucleotide signaling events, and various protein molecules were evaluated ex vivo in collagen-stimulated washed platelets. Furthermore, antithrombotic properties were evaluated using a standard acute pulmonary thromboembolism model, and the effects on hemostasis were investigated using rat and mice models. Results: Both RGE and FRG significantly inhibited platelet aggregation, calcium mobilization, and dense granule secretion along with integrin-mediated fibrinogen binding and fibrinogen adhesion. cAMP levels were found to be elevated in RGE-treated rat platelets. Ginseng extracts did not exert any effect on prothrombin time and activated partial thromboplastin time. RGE-treated mice showed significantly better survival under thrombosis than FRG-treated mice, with no effects on hemostasis, whereas FRG-treated mice exhibited a slight increment in bleeding time. Conclusion: Both extracts, especially RGE, are remarkable supplements to maintain cardiovascular health and are potential candidates for the treatment and prevention of platelet-related cardiovascular disorders.

Improving the Functional Quality of Kochujang Added with Red Ginseng and Fermented Wild Herbal Extract (홍삼과 산야초 발효액을 첨가한 고추장의 기능성 향상에 관한 연구)

  • Youn, Kum-Ju;Kim, Ji-Young;Yeo, Hye-Reem;Jun, Mi-Ra
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1675-1679
    • /
    • 2011
  • To improve the quality and palatability of Kochujang, the physicochemical properties, antioxidant capacity, and sensory evaluation of Kochujang were assessed when red ginseng and wild herbal extract were added during fermentation. This study investigated the antioxidant capacities of general Kochujang (GK) and Kochujang prepared with red ginseng and fermented wild herbal extract (RGK) by employing various in vitro antioxidant assays such as DPPH and FRAP assays. Inhibition of lioxygenase (LOX) activity was also investigated. RGK exhibited significant antioxidant effects compared to control in DPPH, FRAP, and LOX assays. The LOX inhibitory activity of RGK ($68.68{\pm}3.37%$) at 100 ${\mu}g$/mL was markedly higher than those of GK ($31.21{\pm}2.64%$) and NDGA (positive control, $30.54{\pm}1.36%$). All concentrations of RGK showed significantly higher FRAP activities than that of GK. The addition of red ginseng and fermented wild herbal extract exhibited better sensory characteristics in terms of color, flavor, taste and overall preference. We concluded that RGK improves not only functional properties but also sensory properties as well.

Microbial Conversion of Ginsenoside from the Extract of Korean Red Ginseng (Panax ginseng) by Lactobacillus sp.

  • Cho, Hye-Jin;Jung, Eun-Young;Oh, Sung-Hoon;Yoon, Brian;Suh, Hyung-Joo;Lee, Hyun-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2010
  • Thirty-four strains of Lactobacillus species were isolated from soil and eight of these isolates (M1-4 and P1-4) were capable of growing on red ginseng agar. The M1 and P2 strains were determined to be L. plantarum and other strains (M2, M3, M4, P1, P3 and P4) were determined to be L. brevis. Fermentation of red ginseng extract (RGE) with strains M1, M2, P2 and P4 resulted in a low level of total carbohydrate content (174.3, 170.0, 158.8 and 164.8 mg/mL, respectively). RGE fermented by M3 showed a higher level of uronic acid than the control. The polyphenol levels in RGE fermented by M1, P1 and P2 (964.9, 941.7 and $965.3\;{\mu}g/mL$, respectively) were higher than the control ($936.8\;{\mu}g/mL$). Total saponin contents in fermented RGE (except M1) were higher than the control. RGE fermented by M2 and M3 had the highest levels of total ginsenosides (31.7 and 32.7 mg/mL, respectively). The levels of the ginsenoside Rg3 increased from 2.6 mg/mL (control) to 3.0 mg/mL (M2) or 3.1 mg/mL (M3). RGE fermented by M2 and M3 also had the highest levels of Rg5+Rk1 (7.7 and 8.3 mg/mL, respectively). Metabolite contents of ginsenoside (sum of CK, Rh1, Rg5, Rk1, Rg3 and Rg2) of M2 (13.0 mg/mL) and M3 (13.9 mg/mL) were also at a high level among the fermented RGE. Protopanaxadiol and protopanaxatriol content of ginsenoside of M2 (10.9 and 5.4 mg/mL, respectively) and M3 (11.0 and 5.7 mg/mL, respectively) were at higher levels than other fermented RGE.

Changes of Ginsenoside Content by Mushroom Mycelial Fermentation in Red Ginseng Extract

  • Bae, Song-Hwan;Lee, Hyun-Sun;Kim, Mi-Ryung;Kim, Sun-Young;Kim, Jin-Man;Suh, Hyung-Joo
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.235-242
    • /
    • 2011
  • To obtain microorganisms for the microbial conversion of ginsenosides in red ginseng extract (RGE), mushroom mycelia were used for the fermentation of RGE. After fermentation, total sugar contents and polyohenol contents of the RGEs fermented with various mushrooms were not a significant increase between RGE and the ferments. But uronic acid content was relatively higher in the fermented RGEs cultured with Lentus edodes (2155.6 ${\mu}g/mL$), Phelllinus linteus (1690.9 ${\mu}g/mL$) and Inonotus obliquus 26137 and 26147 (1549.5 and 1670.7 ${\mu}g/mL$) compared to the RGE (1307.1 ${\mu}g/mL$). The RGEs fermented by Ph. linteus, Cordyceps militaris, and Grifola frondosa showed particularly high levels of total ginsenosides (20018.1, 17501.6, and 16267.0 ${\mu}g/mL$, respectively). The ferments with C. militaris (6974.2 ${\mu}g/mL$), Ph. linteus (9109.2 ${\mu}g/mL$), and G. frondosa (7023.0 ${\mu}g/mL$) also showed high levels of metabolites (sum of compound K, $Rh_1$, $Rg_5$, $Rk_1$, $Rg_3$, and $Rg_2$) compared to RGE (3615.9 ${\mu}g/mL$). Among four different RGE concentrations examined, a 20 brix concentration of RGE was favorable for the fermentation of Ph. linteus. Maximum biotransformation of ginsneoside metabolites (9395.5 ${\mu}g/mL$) was obtained after 5 days fermentation with Ph. linteus. Maximum mycelial growth of 2.6 mg/mL was achieved at 9 days, in which growth was not significantly different during 5 to 9 days fermentation. During fermentation of RGE by Ph. linteus in a 7 L fermenter, $Rg_3$, $Rg_5$, and $Rk_1$ contents showed maximum concentrations after 5 days similar to flask fermentation. These results confirm that fermentation with Ph. linteus is very useful for preparing minor ginsenoside metabolites while being safe for foods.

Immunostimulatory Effect of Fermented Red Ginseng in the Mouse Model

  • Park, Sang-Yong;Kim, Ho-Bin;Kim, Jeong-Hoon;Lee, Joo-Mi;Kim, Sang-Rae;Shin, Heon-Sub;Yi, Tae-Hoo
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • In this study, Woongjin fermented red ginseng extract (WFRG) was evaluated for its potential ability to act as an adjuvant for the immune response of mice. For the in vitro study, macrophages were treated with serial concentrations ($1{\mu}g/mL$, $10{\mu}g/mL$, and $100{\mu}g/mL$) of WFRG. For in vivo studies, mice were administered different concentrations (10 mg/kg/day, 100 mg/kg/day, and 200 mg/kg/day) of WFRG orally for 21 days. In vitro, the production of nitric oxide and TNF-${\alpha}$ by RAW 264.7 cells increased in a dose-dependent manner. In vivo, WFRG enhanced the proliferation of splenocytes induced by two mitogens (i.e., concanavalin A and lipopolysaccharide [LPS]) and increased LPS-induced production of TNF-${\alpha}$ and IL-6, but not IL-$1{\beta}$. In conclusion, WFRG has the potential to modulate immune function and should be further investigated as an immunostimulatory agent.

Lactic Acid Fermentation of Onion Juice Supplemented with Puffed Red Ginseng Extract (팽화 홍삼 추출액을 첨가한 양파 착즙액의 유산 발효)

  • Park, Young-Seo;Jang, Jae Kweon;Choi, Young Jin;Chung, Myong-Soo;Park, Hoon;Shim, Kun-Sub
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • Onion juices supplemented with different concentrations of puffed red ginseng extract were fermented using Pediococcus pentosaceus KC-007 and their biologically functional properties were investigated. When onion juices were supplemented with puffed red ginseng extract at the concentration of 0.5, 1, 2, and 4% (v/v) each, viable cell number of lactic acid bacteria was the highest at 24 hr of fermentation in all samples. The titratable acidity increased as the fermentation proceeds irrespective of the added amount of red ginseng extract, and the pH of fermentation broth decreased until 36 hr of fermentation. The reducing sugar of fermentation broth decreased until 24 hr of fermentation and did not change thereafter. The electron donating ability and nitrite scavenging ability were highest when red ginseng extract was added at the concentration of more than 1% (w/v). The overall acceptance in sensory evaluation was the best when red ginseng extract was added at the concentration of 1% (w/v). From these results, it is confirmed that the optimum concentration of puffed red ginseng extract for the lactic acid fermentation of onion juice was 1% (w/v).

Anti-Obesity Effects of Mixture of Cheese, Fermented Red Ginseng and Rubus coreanus Miquel (홍삼·복분자 혼합 발효물을 첨가한 치즈의 항비만 효과)

  • Lee, Da young;Kim, Nam Seok;Kim, Ha Rim;Kim, Min Sun;Lee, Chang Hyun;Oh, Mi Jin;Oh, Chan Ho;Kim, Jong Suk;Kim, Myung Soon;Kwon, Jin
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.2
    • /
    • pp.242-251
    • /
    • 2018
  • This study was investigating the anti-obesity effects of diets with a mixture of cheese, red ginseng and fermented mature fruit of Rubus coreanus Miquel. We fed the experimental diets (SC5, SC10) supplemented with 5% or 10% cheese containing of fermented mixture, then orally administered the extract of fermented mixture (RB100, RB300) at a concentration of 100 or 300 mg/kg body weight to SD rats with high fat diet (HFD). The results were as follows: Sample cheese groups decreased visceral fat mass and adipocyte size of stomach compared to that of HFD group. Additionally, lipid droplets of liver in sample cheese groups were smaller than that in HFD group. The serum triglyceride (TG), total cholesterol (tChol), glucose, leptin, and insulin levels in sample cheese group were lower than that in HFD group. But, the serum adiponectin and HDL-cholesterol (cHDL) levels were higher than that in HFD group. These results suggest that fermentation of red ginseng and Rubus coreanus mixed with cheese might be helpful in preventing obesity in high fat diet-fed rats.

Physicochemical and Antioxidant Properties of Red Ginseng Marc Fermented by Bacillus subtilis HA with Mugwort Powder Addition (고초균 발효에 의한 홍삼박 발효물에 쑥 분말 첨가에 따른 물리화학적 및 항산화적 특성)

  • Jung, Hye-Won;Kim, Ji-Eun;Seo, Ji-Hyun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1391-1398
    • /
    • 2010
  • Red ginseng marc (RGM) was fermented by the solid-state fermentation using Bacillus subtilis HA to produce biologically active compounds. The red ginseng marc fermented without mugwort possessed higher mucilage content (11.5%) and proteolytic activity (277.5 unit/g). The RGM fermented with 3% mugwort showed lower production of mucilage and protease activity whereas higher tyrosine content (581.3 mg%) and consistency index ($8.8\;Pa{\cdot}s^n$). The mucilage produced from fermented RGM contained $\gamma$-PGA with 1,100 kDa of molecular weight, and its yield was 15.9 g/kg. 70% ethanol extract from the RGM fermented with 3% mugwort had the highest DPPH radical scavenging effect ($IC_{50}$ value of 0.57 mg/mL), and the water extract showed the highest ABTS radical scavenging effect, indicating $IC_{50}$ value of 1.24 mg/mL. Overall, the RGM fermented by B. subtilis HA with mugwort contained various biologically active compounds having antioxidant effects.

Biological Activities and Chemical Characteristics of Monascus-Fermented Korean Red Ginseng (홍국발효홍삼의 이화학적 특성 및 생리활성)

  • Park, Jin-Chul;Cha, Jae-Young;Lee, Chi-Hyeong;Doh, Eun-Soo;Kang, In-Ho;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1553-1561
    • /
    • 2009
  • This study investigated the biological activities and chemical characteristics of Monascus-fermented Korean red ginseng (MFRG). The comparative activities of water, ethanol, and methanol extracts from MFRGE and Korean red ginseng (RG) were tested in vitro of anti-oxidative models of linoleic acid peroxidation by thiocyanate and thiobarbituric acid (TBA) methods and DPPH ($\alpha,\alpha'$-diphenyl-$\beta$-picrylhydrazyl)radical scavenging activities. In addition, measurements of their bioactive total phenolic compounds and minerals, and extract yield, were obtained. The extract yield of each solvent extracted from MFRG and RG was aqueous by 6.58% and 5.83%, ethanol by 0.62% and 0.98%, and methanol by 1.27% and 3.04%, respectively. Total phenolic compounds were higher in all solvents extracted from MFRG than those from RG. Major mineral contents (ppm) of MFRG and RG were K by 16,936 and 22,386, Ca by 2,310 and 3,693, Mg by 2,703 and 2,647, respectively. The DPPH radical scavenging activities were higher in all solvents extracted from MFRG than those from RG, however, all these extracts exhibited a relatively low level of radical-scavenging activity compared to the butylated hydroxytoluene (BHT). In antioxidative activities determined by TBA method using linoleic acid peroxidation, 70% methanol extract from MFRG and RG showed the highest antioxidative activity at a concentration of 0.1%. These results may provide the basic data to understand the biological activities of bio-active materials derived from MFRG.

Anti-neuroinflammatory effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium on lipopolysaccharide activated BV2 microglial cells (LPS로 인해 활성화된 BV2 Microglia에서 발효 복합버섯-곡물 숙성균주 배양 홍삼(紅蔘)의 뇌신경염증 보호효과)

  • Bitna, Kweon;Jin-Young, Oh;Dong-Uk, Kim;Mi-Kyung, Jang;Jun-Hyoung, Cho;Sung-Joo, Park;Gi-Sang, Bae
    • The Korea Journal of Herbology
    • /
    • v.38 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Objectives : Neuroinflammation is a common pathological mechanism of neurodegenerative diseases, and the development of therapeutic agents is urgently needed. Red ginseng has been known to be good for the immune stimulation in Eastern Asia. Although the immuno-stimulatory activity of red ginseng are already known, the neuro-protective effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium (RGFM) have not been conducted. Thus, in this study, we tried to investigate the anti-neuroinflammatory effect of RGFM water extract on lipopolysaccharide (LPS) stimulated BV2 cells. Methods : BV2 cells were pretreated with RGFM 1 h prior to LPS exposure. To determine the neuro-protective effects of RGFM water extract, we measured the expression of inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and nitric oxide (NO) and pro-inflammatory cytokines such as interleukin (IL)-1𝛽, IL-6 and tumor necrosis factor (TNF)-𝛼 in LPS-stimulated BV2 cells. In addition, to find out the regulatory mechanism of RGFM water extract, we assessed the protein levels of mitogen-activated protein kinases (MAPKs) and inhibitory 𝜅B𝛼 (I𝜅B𝛼) by western blotting. Results : In our study, treatment of RGFM reduced the mRNA expression of iNOS and COX-2 and suppressed NO production in LPS-stimulated BV2 cells. Additionally, the secretion of IL-1𝛽 and TNF-𝛼 but not IL-6 was significantly inhibited by RGFM. Furthermore, RGFM water extract inhibited the phosphorylation of c-Jun N-terminal kinase (JNK). Conclusions : Taken together, these findings suggest that RGFM water extract has a protective effect on neuroinflammation through inhibition of JNK.