Acknowledgement
본 연구는 2022년도 원광대학교 교비지원에 의해 수행되었습니다.
References
- Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42.
- Jellinger KA. Recent advances in our understanding of neurodegeneration. Journal of neural transmission. 2009;116(9):1111-62. https://doi.org/10.1007/s00702-009-0240-y
- Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med. 2010;14(3):457-87. https://doi.org/10.1111/j.1582-4934.2010.01010.x
- Polazzi E, Monti B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol. 2010;92(3):293-315. https://doi.org/10.1016/j.pneurobio.2010.06.009
- Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nature Reviews Immunology. 2018;18(4):225-42. https://doi.org/10.1038/nri.2017.125
- Santiago AR, Baptista FI, Santos PF, Cristovao G, Ambrosio AF, Cunha RA, et al. Role of microglia adenosine A2A receptors in retinal and brain neurodegenerative diseases. Mediators of inflammation. 2014;2014.
- Kwak Y-S, Choi K-H, Kyung J-S, Won J-Y, Rhee M-H, Lee J-G, et al. Effects of high temperature heating on the some physicochemical properties of Korean red ginseng (Panax ginseng CA Meyer) water extract. Journal of Ginseng Research. 2008;32(2):120-6. https://doi.org/10.5142/JGR.2008.32.2.120
- Seo BI, Kwon, D.Y., Choi, H.Y., Lee, J.H., Oh, M.S., Bu, Y.M. Medicinal Herbology. Seoul: Younglim-Sa; 2008.
- Nam K-Y. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng CA Meyer). Journal of Ginseng Research. 2005;29(1):1-18. https://doi.org/10.5142/JGR.2005.29.1.001
- Jo J-Y. Immunomodulatory Effects of Red Ginsengderived components. Food preservation and processing industry. 2009;8(2):6-12.
- Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, et al. Effect of Korean Red Ginseng on metabolic syndrome. J Ginseng Res. 2021;45(3):380-9. https://doi.org/10.1016/j.jgr.2020.11.002
- Hong C-E, Lyu S-Y. Anti-inflammatory and anti-oxidative effects of Korean red ginseng extract in human keratinocytes. Immune network. 2011;11(1):42-9. https://doi.org/10.4110/in.2011.11.1.42
- Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, et al. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res. 2016;40(3):203-10. https://doi.org/10.1016/j.jgr.2015.07.006
- Song Y-B, Kyung J-S, Park S-B, Wee J-J, Do J-H, Kim Y-S. Influence of Korean red ginseng water extract on recovery of hepatic function in hypercholesterolemic mice fed high cholesterol diet. Journal of ginseng research. 2008;32(4):283-90. https://doi.org/10.5142/JGR.2008.32.4.283
- Li X, Han J-S, Park Y-J, Kang S-J, Kim J-S, NamK-Y, et al. Extracting conditions for promoting ginsenoside contents and taste of red ginseng water extract. Korean Journal of Crop Science. 2009;54(3):287-93.
- Lee J-M, Ko M-J, Chung M-S. Physicochemical properties and composition of ginsenosides in red ginseng extract as revealed by subcritical water extraction. Korean Journal of Food Science and Technology. 2015;47(6):757-64. https://doi.org/10.9721/KJFST.2015.47.6.757
- Lee H-D, Lee G-S. β-Glucan and glucosamine contents in various cereals cultured with mushroommycelia. The Korean Journal of Mycology. 2009;37(2):167-72. https://doi.org/10.4489/KJM.2009.37.2.167
- Lee B-E, Ryu S-Y, Kim E-H, Kim Y-H, Kwak K-A, Song H-Y. Immunostimulating effect of mycelium extract of Phellinus linteus. Korean Journal of Pharmacognosy. 2012;43(2):157-62.
- Mun H-C, Lee H-S, Park J-H, Kim D-H, Lee S-Y, Seong N-S, et al. Enhancement of immune activities of Ganoderma lucidum mycelium cultured with garlic enriched medium. Korean Journal of Medicinal Crop Science. 2004;12(1):24-30.
- Lee JH, Soo MC, Kyung SS, Sang BH, Hwan MK, Nam DH, et al. Immunostimulating activity and characterization of polysaccharides from mycelium of Phellinus linteus. Journal of Microbiology and Biotechnology. 1996;6(3):213-8.
- Kim HS, Hong JT, Kim Y, Han SB. Stimulatory Effect of beta-glucans on Immune Cells. Immune Netw. 2011;11(4):191-5. https://doi.org/10.4110/in.2011.11.4.191
- Yan J, Vetvicka V, Xia Y, Coxon A, Carroll MC, Mayadas TN, et al. β-Glucan, a "specific" biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18). The Journal of Immunology. 1999;163(6):3045-52. https://doi.org/10.4049/jimmunol.163.6.3045
- Stier H, Ebbeskotte V, Gruenwald J. Immunemodulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J. 2014;13:38.
- Lee J-S, Lee S-H, Jang Y-M, Lee J-D, Lee B-H, Jung J-Y. Macrophage and anticancer activities of feed additives on β-glucan from Schizophyllum commune in breast cancer cells. Journal of the Korean Society of Food Science and Nutrition. 2011;40(7):949-55. https://doi.org/10.3746/JKFN.2011.40.7.949
- Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX: Alternatives to animal experimentation. 2009;26(2):83-94. https://doi.org/10.14573/altex.2009.2.83
- Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. International journal of cancer. 2007;121(11):2357-63. https://doi.org/10.1002/ijc.23161
- Kim Y-K, Na K-S, Myint A-M, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Progress in NeuroPsychopharmacology and Biological Psychiatry. 2016;64:277-84. https://doi.org/10.1016/j.pnpbp.2015.06.008
- Bartels AL, Leenders KL. Cyclooxygenase and neuroinflammation in Parkinson's disease neurodegeneration. Current neuropharmacology. 2010;8(1):62-8. https://doi.org/10.2174/157015910790909485
- Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic brain injury. Science. 2016;353(6301):783-5. https://doi.org/10.1126/science.aaf6260
- Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, et al. Neuroinflammation Induces Neurodegeneration. J Neurol Neurosurg Spine. 2016;1(1).
- Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354-65. https://doi.org/10.1016/j.nurt.2010.05.014
- Ryu G. Recent trend in red ginseng manufacturing process and characteristics of extruded red ginseng. Food Engineering Progress. 2007.
- Surh Y-J, Chun K-S, Cha H-H, Han SS, Keum Y-S, Park K-K, et al. Molecular mechanisms underlying chemopreventive activities of antiinflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2001;480:243-68.
- Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004;63(9):901-10. https://doi.org/10.1093/jnen/63.9.901
- Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proceedings of the National Academy of Sciences. 1996;93(6):2317-21. https://doi.org/10.1073/pnas.93.6.2317
- Teismann P, Tieu K, Choi D-K, Wu D-C, Naini A, Hunot S, et al. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proceedings of the National Academy of Sciences. 2003;100(9):5473-8. https://doi.org/10.1073/pnas.0837397100
- Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev. 2005;57(2):217-52. https://doi.org/10.1124/pr.57.2.1
- Bal-Price A, Brown GC. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci. 2001;21(17):6480-91. https://doi.org/10.1523/jneurosci.21-17-06480.2001
- Shaftel SS, Griffin WS, O'Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation. 2008;5:7.
- Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPKactivated protein kinases. Microbiology and molecular biology reviews. 2011;75(1):50-83. https://doi.org/10.1128/MMBR.00031-10
- Lim HS, Kim YJ, Kim BY, Park G, Jeong SJ. The Anti-neuroinflammatory Activity of Tectorigenin Pretreatment via Downregulated NF-kappaB and ERK/JNK Pathways in BV-2 Microglial and Microglia Inactivation in Mice With Lipopolysaccharide. Front Pharmacol. 2018;9:462.
- Chen F, Castranova V, Shi X, Demers LM. New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases. Clinical chemistry. 1999;45(1):7-17. https://doi.org/10.1093/clinchem/45.1.7
- Wang Q, He Q, Chen Y, Shao W, Yuan C, Wang Y. JNK-mediated microglial DICER degradation potentiates inflammatory responses to induce dopaminergic neuron loss. J Neuroinflammation. 2018;15(1):184.
- Shih RH, Wang CY, Yang CM. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front Mol Neurosci. 2015;8:77.
- Kaminska B, Gozdz A, Zawadzka M, Ellert- Miklaszewska A, Lipko M. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology. 2009;292(12):1902-13. https://doi.org/10.1002/ar.21047
- Bui BP, Nguyen PL, Do HTT, Cho J. Anxiolytic effect of Korean Red Ginseng through upregulation of serotonin and GABA transmission and BDNF expression in immobilized mice. J Ginseng Res. 2022;46(6):819-29. https://doi.org/10.1016/j.jgr.2022.07.007