• Title/Summary/Keyword: Feedforward adaptive control system

Search Result 82, Processing Time 0.018 seconds

Robust and adaptive congestion control in packet-switching networks

  • Shim, Kwang-Hyun;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.368-371
    • /
    • 1996
  • In this paper, a feedforward-plus-feedback control scheme is presented to prevent congestion in store-and-forward packet switching networks. The control scheme consists of two algorithms. Specifically, the input traffic adjustment algorithm employs a fairness policy such that the transmission rate of the input traffic is proportional to its offered rate. The control signal computation algorithms to ensure stability of the overall system in the robust sense and to ensure the desired transient behavior in the adaptive, with respect to variations of input traffic, are designed.

  • PDF

Robust Decentralized Adaptive Controller for Trajectory Tracking Control of Uncertain Robotic Manipulators (비중앙 집중식 강성 적응 제어법을 통한 산업용 로봇 궤도추적제어)

  • 유삼상
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.329-340
    • /
    • 1994
  • This paper presents a dynamic compensation methodology for robust trajectory tracking control of uncertain robot manipulators. To improve tracking performance of the system, a full model-based feedforward compensation with continuous VS-type robust control is developed in this paper(i.e,. robust decentralized adaptive control scheme). Since possible bounds of uncertainties are unknown, the adaptive bounds of the robust control is used to directly estimate the uncertainty bounds(instead of estimating manipulator parameters as in centralized adaptive control0. The global stability and robustness issues of the proposed control algorithm have been investigated extensively and rigorously via a Lyapunov method. The presented control algorithm guarantees that all system responses are uniformly ultimately bounded. Thus, it is shown that the control system is evaluated to be highly robust with respect to significant uncertainties.

  • PDF

Design of an Intelligent Speed Control System for Marine Diesel Engines (선박용 디젤엔진을 위한 지능적인 속도제어시스템의 설계)

  • J.S.Ha;S.J.Oh
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.414-420
    • /
    • 1997
  • An intelligent speed control system for marine diesel engines is presented. The approach adopt¬ed is to use a conventional PID controller for normal operation and a feedforward controller for adaptive control. The feedforward controller is a neural network. The neural network is the inverse dynamics model of the plant, which is being trained on line. The parametric model of the diesel engine is represented in a linear second-order system, with a first-order combustion part and a revolution part each at a normal operating point. The time delay in the control of the com¬bustion part is approximated to the first-order system. The tuned PID parameters are set based on the model for normal operating point. To obtain the inverse dynamics of the diesel engine system, two neural networks are used, one for inverse, the other for forward dynamics. The former is posi¬tioned across the plant to learn its inverse dynamics during operation, and the latter is placed in series with the controlled plant. Simulation results are presented to illustrate the applicability of the proposed scheme to intelligent adaptive control of diesel engines.

  • PDF

Design of a real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로봇의 실시간 적응제어기 설계)

  • 최근국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.154-161
    • /
    • 1999
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

A Study on the Real Time Adaptive Controller for SCARA Robot Using TMS320C31 Chip (TMS320C31 칩을 사용한 스카라 로봇의 실시간 적응제어데 관한 연구)

  • 김용태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.79-84
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Design of a Real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로버트의 실시간 적응제어기 설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.26-37
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller. feedback controller. and PID type time-varying auxiliary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require a an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

The Optional Summed Algorithm for Active Noise Control (능동 소음 제어를 위한 선택적 결합 알고리듬)

  • Kwon, Oh-Sang;Cha, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.18-25
    • /
    • 1997
  • The feedforward control algorithm for active noise control exhibits high stability and performance robustness. But it has a slow convergence speed and requires a correlated reference signal. Broadband active control systems typically use feedback control in order to increase the convergence speed and to avoid the problems associated with obtaining and decoupling a suitable reference signal. However, it is well known that conventional feedback control systems have a gain-bandwidth limitation and stability problem. This paper presents the new system based on the combination of both feedforward and feedback system in order to increase the convergence speed. The proposed system uses a proposed control algorithm termed "optional-summed" algorithm in which the "optional summed reference signal" comprised of weighted sum of an original reference signal and a eror signal, is used as an input to an adaptive system. Thus, the proposed system can have faster convergence speed and better performance than either feedforward or feedback system using the Filtered-x LMS algorithm as almost equivalent complexity of computation as it. Several simulation results demonstrating the good properties of the proposed adaptive system as well as verifying the analytical results are also presented in the paper.

  • PDF

A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control

  • Cho, Young-Wan;Seo, Ki-Sung;Lee, Hee-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.630-642
    • /
    • 2007
  • In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC) for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model. The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so that it provides asymptotic tracking of the reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. To verify the validity and effectiveness of the MRAFC scheme, the suggested analysis and design techniques are applied to the tracking control of robot manipulator and simulation studies are carried out. In the control design, the MRAFC is combined with feedforward PD control to make the actual joint trajectories of the robot manipulator with system uncertainties track the desired reference joint position trajectories asymptotically stably.

Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Theory (MFXLMS 알고리즘을 이용한 전자기배어링계의 외란 보상 제어기 - 이론)

  • 강민식;정종수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.74-82
    • /
    • 2004
  • In this paper, a disturbance feedforward compensator design technique is proposed for an active magnetic bearing system subject to base motion for attenuating disturbance responses. In the consideration of the requirements on the model accuracy in the model based compensator designs, an experimental feedforward compensator design based on adaptive estimation by means of the Multiple Filtered-x least mean square(MFXLMS) algorithm is proposed. The performance and the effectiveness of the proposed technique will be presented in the succeeding paper in which the proposed technique is applied to a 2-DOF active magnetic bearing system subject to base motion.

Direct Adaptive Control of Chaotic Nonlinear Systems Using a Feedforward Neural Network (신경 회로망을 이용한 혼돈 비선형 시스템의 직접 적응 제어)

  • Kim, Se-Min;Choi, Yoon-Ho;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.401-403
    • /
    • 1998
  • This paper describes the neural network control method for the identification and control of chaotic nonlinear dynamical systems effectively. In our control method, the controlled system is modeled by an unknown NARMA model, and a feedforward neural network is used for identifying the chaotic system. The control signals are directly obtained by minimizing the difference between a setpoint and the output of the neural network model. Since learning algorithm guarantees that the output of the neural network model approaches that of the actual system, it is shown that the control signals obtained can also make the real system output close to the setpoint.

  • PDF