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In this paper, a feedforward-plus-feedback control scheme is presented to prevent congestion in

store-and-forward packet switching networks. The control scheme consists of two algorithms. Specifically,
the input traffic adjustment algorithm employs a fairness policy such that the transmission rate of the input
traffic is proportional to its offered rate. The control signal computation algorithms to ensure stability of the
overall system in the robust sense and to ensure the desired transient behavior in the adaptive, with respect

to variations of input traffic, are designed.
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1. INTRODUCTION

Since the past several decades of years, users of communica-
tion networks have increased through a persistent progress
in communication techniques. With a rapid increase of
users, many problems in network management have been
generated, including congestion as a remarkable problem.
Generally, congestion can be defined as follows: an undesir-
able result due to insufficiency of network resources (buffer
space, transmission facilities) as compared with users’ de-
mands. Congestion, when once it occurs, causes undesirable
effects, such as a deterioration of network’s throughput and
a substantial increase of users’s time delay.

Thus, the congestion control problem has been studied
as one of the most active areas of research in communica-
tion networks. In [1]-[4], adaptive window-based schemes
were proposed and investigated. Subsequently, in [5]-[6],
rate-based schemes were suggested and analyzed. In some
cases, these congestion control schemes may be effective in
avoiding or recovering from congestion. However, in these
schemes, it was also shown that the overall system is locally
unstable in neighborhood of the desired operating point (os-
cillatory behavior) [6].

In this paper, we provide an analytical design method of a
congestion control scheme to ensure asymptotic stability of
the overall system in the robust sense, with respect to varia-
tions of the input traffic, and to ensure the desired transient
behavior of the overall system in the adaptive sense.

This paper is structured as follows: In section 2, the
model of store-and-forward packet-switching networks and
feedforward-plus-feedback congestion control scheme is con-
structed respectively. In section 3, we develop the design
method of the congestion control scheme in the robust sense
and the adaptive sense, respectively. In section 4, the ob-
tained results are confirmed additionally through numerical
examples. Finally, in section 5, the conclusions are formu-
lated.

2. THE MODEL
2.1 The Network

The network considered in this paper is assumed to be a
deterministic fluid model as follows:
(i) The network uses packet-switching technology and
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employs a store-and-forward switching service in which
users are serviced without prior reservation.

(ii) The network consists of switching nodes, intercon-
nected by transmission links(refer to Fig. 1(a)).

(1) Each link has a transmission capacity of ¢¢r = 1/,
(packets/sec), where 7i, is the transmission time of a packet.

(iv) Each link has a propagation delay of 7, sec. It is
proportional to the length of the link.

(v) Each node has a switching capacity of csw = 1/74y
(packets/sec), where 7,y is the switching time of a packet.
The switching capacity of a node is larger than the total
transmission capacity of its incoming links. It means that
links rather than switches are overloaded.

(v1) The network traffic is classified into flows correspond-
ing to each source-destination node pair (a,bd), denoted by
flow (ab).

(vii) For each flow (ab), the source node a sends packets to
the destination node b through the fixed transmission path
of the flow, denoted by p(ab). The routing policy which
determines the transmission path of each flow is static. Let
F (i) be the set of all flows passing through link i.

(viii) Each node has output-buffering structure(refer to
Fig. 1(b)): In a node, there is no need for buffers associated
with its incoming links due to high-speed switching, however
for each of its outgoing links, however, there is a buffer for
storing packets waiting to be transmitted. Let z; denote
the number of packets buffered for transmission through
outgoing link i. We assume that each buffer has a finite but
large capacity X.

(ix) The input traffic is viewed as a deterministic fluid-
flow.

(x) For each flow (ab), let A5,(t) denote its offered rate
(packets/sec) at time 2. Let f2(¢) = E(Gb)eF('.) 2%,(1) be the
total offered rate (packets/sec) of all flows passing through
link z. We assume that the input traffic is such that only one
link in a given transmission path is overloaded, i.e. there
exists a link 7o such that f_ (t) > cir whereas f{(t) < cir
for all ¢ # 2.

Under the assumptions (i)-(x), we formulate the dynam-
ics of buffers in the network. First, let z;(¢) denote the
occupancy of the buffer associated with link 7 at time ¢.
Then, the buffer dynamics is represented by the following



(a) Network topology

(b) Node configuration

Fig. 1: A configuration of packet-switching networks

differential equation for deterministic fluid-flow:

dz.(1) 0 if f.(t) < ¢tr and z(t) =0,

~— = or if fi(t) > cer and zi(t) = X
fi(t) — cer  otherwise

where fi(t) is the traffic arrival rate at the buffer of link ¢

at time t. Let A,5(t) denote the rate at which flow (ab) is

transmitted to the network at time t. Then, we get

f)= Y da(t-r)
(ab)EF(1)
where F'(1) is the set of all flows passing through link ¢, and
722 is the forward trip delay of flow (ab) until it arrives at the
buffer of link i. The backward trip delay of flow (abd) from
link i to source node a, denoted by 722, is defined in a way
similar to the forward trip delay 2. In fact, the backward
path is the reverse of the forward path. Accordingly, as it
follows from assumption (x), forward and backward delay

for the overload link i are equal, denoted by =%%:

ab __ _ab __ _ab
T = Taig = Tiga

We assume that 7® is a multiple of control period T, defined
in section 2.2, in other words, r°%/T is assumed to be an
integer for a simplicity, although the non-integer case can
be extended directly.

Moreover, it follows from assumption (x) that for some
link i except the overloaded link 1o, fi(t) — ¢t must be al-
ways negative Therefore, assuming that buffers are initially
empty (z:i(0) = 0, Vi), the buffers of the non-overloaded
links remain continually empty.

z:(1) =0, t>0, Vi#io

As it follows from the above, there is no queuing delay at
the buffers of the non-overloaded links.

2.2 The Congestion Control Scheme

The control scheme for congestion prevention is constructed
as follows:

(xi) In a node, there is a control signal computation al-
gorithm associated with each of its outgoing links. The
algorithm computes periodically a control signal.

(xil) A control signal is newly computed every T sec.
Thus, the time is slotted with the slot duration, [r,n + 1),
n=20,1,---, equal to T.

(xiii) Each node sends the computed control signal to the
sources along a fixed backward path, usually the reverse di-
rection of the traffic transmission path. This data is serviced
with high priority.

(xiv) In respond to the control signal, the sources ad-
just their transmission rates according to the input traffic
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adjustment algorithm.

As it follows from the above assumptions (xi)-(xiv), the
congestion control scheme consists basically of two algo-
rithms: a control signal computation algorithm and an in-
put traffic adjustment algorithm.

Control Signal Computation Algorithm: This algorithm
computes periodically a control signal for overloaded link
10, based on the following equation:

{

K
+ Y Belgio(t = kT = T)

Cer

Q-o(t) = FrlJ /\O—(t)—

r4)

_ _):Ot(Lt)]}

a[zio(t) -

k=0
where
X o= Y AL,
(ab)EF(10)
y, if z2>y
ré{z} = z, if z<=¢
z, otherwise.

In this algorithm, A%(¢) is assumed to be available. Prac-
tically, it can be realized through periodical forward trans-
mission of a special data packet including an information on
the offered traffic additionally. Note that the above equation
consists of a feedforward term (c.r/A°(¢)) with intention of
convergence of the buffer occupancy to some finite value
(oscillation prevention), and two feedback terms: a propor-
tional term (—a[zi,(t) — z4]) and a compensational term

K
(3 Brlgio(t— kT —~T) —cer/A°(t)]), where the proportional
k=0
term is implemented for convergence of the buffer occupancy
to the desired value (za4) at the steady state (asymptotic
stability), and the compensational term is implemented for
improvement of transient performance.

Input traffic adjustment Algorithm: This algorithm ad-

just the transmission rate of the offered traffic at the
sources, based on the following equation:

Aas(t+ A) = A%p(t)gio (t — 7°°), V. (ab) € F(io)
where t =0,T,2T,---,and 0 < A< T.

2.8 The Overall System

Discretizing the buffer dynamics with control period (T)
and omitting T, we obtain the following difference equations

Dio(n+1) = TFSag(n)+ Y [rd(n—d*)
(ab)eF(t0)
qlo(n - zdab)] - C} ’ (1)
qlo(n) = I‘0 {m - a[z'o(n) - Id]

.
+Zﬁk[qio(n—k—1)—;aﬁ1} (2)

where 12, (n) = TA, (T), r°(n) = TA°(nT), ¢ = Teir, and
2d*® is the normalized round trip delay. Rearranging the
arrival flows from (1) and omitting index 1o, we obtain the
following equations:



zn+1) = I‘())( {z n) + Zr;(n)q(n —1i) - c} , (3)
g(n) = To {m — afz(n) — zd] (4)
+Zﬂk [g(n— k- )—To(n)]}
where

Tgb(n - ])7

2

(ab)EF(ig), 2dob=1=2j

max
(ab)EF(io)

As defined in the above, the r;(n) can be interpreted as the
total arrival rate for the duration [n,n +1) of all flows with
the round trip delay (between node a and link 79) equal to 1
time slots, and D is the largest normalized round trip delay.

3. THE ANALYSIS

8.1 The Steady State Analysis

Let z, and ¢, denote the steady state values of z(n) and
g(n), respectively. Then, we obtain the following steady
state solution of egs. (3)-(4):

{2d**}.

Ts =Tq

(5)

Note that (5) only satisfies the necessary condition at the
steady state.

s — —§
g% = 5

3.2 The Robust Scheme

The main goal of this section is to design the simple-
structured control algorithm that guarantees the robust sta-
bility of the overall system for variations of the input traffic
whose total amount is limited to a certain value. in eq. (4),
the compensational term can be removed for only robust
stability.

Unfortunately, due to the complex nature of the dynamics
(3)-(4), imposed by the saturation function, we are unable
to solve the robust stability problem in the global sense.
Thus, the robust stability problem in the local sense is only
addressed analytically. Removing the saturation nonlinear-
ities in (3) and (4), we get

D
z(n+1) = n)+Zr.q(n—i)—c (6)
o) = 5 —afe(n)—zd. (M)
Combining these two equations, we obtain
D
z(n-{-l)=z(n)—§:r;a[z(n—z’)—zd] (8)

1=0
where r; is a constant value of r;(n) during the settling time.

Subsequently, the characteristic polynomial of eq. (8) can
be represented by
d(z2) = P+ zD+roazD+rlazD_l ot rha

To check the robust stability of the above polynomial, we
first formulate the following lemma.
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Lemma 1 Given n > 0, there exists § > 0 such that the
polynomial p.(z) = 2™ — z"~" + r is stable if and only if
0<r<é.

This proof is obtained from Jury’s test. Based on Theorem
1in [7] and Lemma 1, we develop the following theorem and
corollary.

Theorem 1 Given r > 0, the set of polynomials P(z) =
{z"—-z”_l a1z 14 Fan | ai >0, Vi, a1+ -+an =
r} is stable if and only if the extreme polynomial p.(z) =
2™ — 2" 4 r is stable.

Proof: Using Theorem 1 in [7], this can be proved.

It should be noted that Theorem 1 describes that in the
coefficient space (ai,---,an), the stability problem of all
polynomials corresponding to the special polytope (a; > 0,
Vi, 0 < a1 + ...+ an < 1) can be reduced to a stability
check of the polynomial corresponding to one (a; = 0, ¢ =
1,---m — 1, an = r) of the extreme-points of the polytope.

Corollary 1 Given r > 0, the set of polynomials P(z) =
{z"=2"""4a1z" 4 dran @i 20, Vi, 0 < ar 4 Fan <
r} ts stable if and only if 0 < r < 2sin (

4n7r—2 "
Proof: This can be easily proved from Theorem 1.
Using Corollary 1, we obtain the condition of the
control gain o such that for all input patterns
(ro(n),71(n),---,rp(n)) whose total rate is not larger than
R®, the overall system is asymptotically stable.

2

RO

( )
3.3 Jne Adaptlve SChEHle

As it follows from the previous section, the robust conges-
tion control scheme can guarantees only the robust stability
of the system. In other words, using a control gain a, we
are unable to realize the desired transient behavior since the
overall system has high-dimensional complicated dynamics
due to the various delay factors. The goal of the adaptive
scheme is that the overall system achieves a desired tran-
sient performance, for a given input traffic pattern. To solve
this problem, in the control algorithm, the compensational
term is inevitable.

Removing the saturation nonlinearities in (3) and (4), we
get

I<a<

(9)

z(n) + Z ri(n)g(n — 1) — ¢

1=0

alz(n) — 4]

z(n + 1) (10)

[

r(n)

g{n)

+memw4> =1 (1)

( n)

To adapt control gains to changes in the input traffic pat-
tern, we develop the following theorem.

Theorem 2 For some given input traffic pattern (rq, 71,
.., p) and the desired poles (Ag, A1, ---, Ap41) of the
above overall system (10)-(11), the poles can be placed at
will by the following choice of the control gains o, Bo, ..., BD

(K=D):
D+1

a = %(1+Za.>



1 & D41 k
Br = 7_02r' 1+Za])— l-}-ZaJ
i=0 1=0 j=0

where k = 0,1,---,D and ai, 1 = 0,1,---, D are coeffi-
ctents of the desired characteristic polynomial of closed-loop
equations, as defined below.

U(z) = (z=A)z—M) (2= Apt1)

D42 D+1 D
z++aoz++alz

+---+ap4:

Proof: By matrix representation, this can be proved.
Note that using Theorem 2, we are able to obtain adaptation
formulas of the control gains to changes of the input traffic
pattern (ro(n),ri(n),...,rp(n)). Note that the adaptive
scheme has the advantage of achieving good performance
but at the expense of higher computational requirements as
compared with the robust scheme.

4. NUMERICAL EXAMPLES
TABLE 1. Input traffic

[ n(time slot) H To(n) [ ri(n) ] r2{n) l ra(n) ] Te(n) ]
0 1 0 3 0 1
100 2 0 8 0 10
200 2 0 18 0 30
300 2 0 8 0 10
400 1 0 0 1

Consider the system with ¢ = 10, z4 = 20. Fig. 2 shows
the network performance of the robust scheme and Figs. 3-
4 show that of the adaptive scheme, according to the input
traffic such as Table 1. Note that in numerical examples,
the adaptive scheme has a fast response as compared with
a robust scheme and the overshoot at sudden change of the
input traffic is due to the network delay factors, such as the
forward trip delay of a data packet and the backward trip
delay of a control signal. The overshoot can be reduced by
a decrease of control period (T).
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0 50 100150 200 250 300 350 400450 500 0 50 100 150200 250 300 350 400 450 500

time time

(a) Buffer occupancy (b) Control signal

Fig. 2: Network response under robust controller with o =
0.005

5. CONCLUSIONS

This paper presented and analyzed the feedforward-plus-
feedback congestion control scheme to solve a congestion
problem in store-and-forward packet switching networks,
where congestion control problem is considered as a view-
point of classical control problem. Specifically, a congestion
control scheme in the robust sense was designed to ensure
asymptotic stability of the overall system for the offered
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Fig. 4: Network response under adaptive controller with all
system poles located at 0

traffic, and also a congestion control scheme in the adap-
tive sense was designed to ensure the desired transient per-
formance of the overall system. Specially, a new extreme-
point robust-stability result for discrete-time polynomials
with special uncertainties in the coefficient space were pre-
sented.
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