• Title/Summary/Keyword: Feedforward Amplifier

Search Result 73, Processing Time 0.027 seconds

The Order Selection of Equalizer in Feedforward Power Amplifier Linearizer using Adaptive Equalizer (적응 등화기를 이용한 Feedforward 선형증폭기에서의 등화기 차수 결정)

  • Chung, Jee-Sung;Yoo, Kyung-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.715-717
    • /
    • 1999
  • 본 논문에서는 feedforward 선형 증폭기에서의 지연 불일치에 의한 효과를 최소화하기 위한 등화기의 차수 결정에 관하여 수학적 접근과 모의실험을 하였다. 현재 feedforward 선형 증폭기에서 주로 사용하는 vector modulator는 지연 불일치에 확실한 개선을 이루지 못하고 있다. 이것을 극복하고자 vector modulator를 등화기로 대체하고 증폭기와 시지연선의 최대시간불일치와 sampling frequency와의 관계로 등화기의 차수를 결정하여 지연 불일치에 의한 오류 제거능력을 향상시켰다.

  • PDF

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit (분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계)

  • Choi, Heung-Jae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.681-689
    • /
    • 2010
  • We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

Analysis of the Adaptation Characteristics of the Nulling Loop Control Circuit for the Feedforward Linear Power Amplifier (휘드훠워드 선형 전력 증폭기의 주 신호 제거회로 적응특성해석)

  • Park, Yil;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.13-21
    • /
    • 1998
  • In this paper, we analyze the main-carrier cancellation characteristics of the nulling loop control circuit which is used for the main-carrier cancellation circuit of the feedforward linear power amplifier. A new nulling loop error control method is proposed to improve the linear power amplifier characteristics. With this analysis, the main carrier cancellation ratio can be estimated and the required specifications of the main and auxiliary amplifiers can be optimized for the economic and power efficiency.

  • PDF

Design of a PCS Band Linear Power Amplifier Using Feedforward Approach (피드포워드 방식을 이용한 PCS 대역 선형 증폭기의 설계)

  • Kim Yoon-Ho;Jeong Jai-Woong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.118-123
    • /
    • 2001
  • For multi-carrier communication system, power amplifier generate intermodulation products caused by their nonlinear characteristics. Intermodulation products arised around the carrier frequency cannot be filtered out, operate as noise source for tile adjacent channel and thus degrades the quality of communication. In this paper, the 1850MHz-band RF linear power amplifier has been designed and fabricated with feedforward loop. The error signal loop consists of several key components such as phase shifter and attenuator, subtracter. The proposed Linearizer was tested with two-tone signals separated 10MHz apart at the center frequency of 1850MHz. The experimental results show C/I improvement by 14.5${\~}$20dB over 15dB dynamic range(33${\~}$47.8dBm) which gave IMD of 53.25${\~}$59dBc for the designed LPA.

  • PDF

Dual-Band Feedforward Linear Power Amplifier Using Equal Group Delay Signal Canceller (동일 군속도 지연 상쇄기를 이용한 이중 대역 Feedforward 선형 전력 증폭기)

  • Choi, Heung-Jae;Jeong, Yong-Chae;Kim, Hong-Gi;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.839-846
    • /
    • 2007
  • In this paper, the first attempt to design a novel structure of dual-band feedforward linear power amplifier(FFW LPA) was presented. Up to now, primary technical difficulty has been the extension of the conventional signal canceller to the dual-band operation. Therefore, we propose the design technique of the dual-band equal group delayed carrier canceller, the dual-band equal group delayed intermodulation distortion(IMD) canceller and the dual-band FFW LPA. The operation frequency bands of the implemented dual-band FFW LPA are digital cellular($f_0=880$ MHz) and IMT-2000($f_0=2.14$ GHz) band, which are separated about 1.26 GHz. With the high power amplifier of 120 W PEP for commercial base-station application, IMD cancellation loop shows 20.45 dB and 25.04 dB loop suppression at each band of operation for 100 MHz. From the adjacent channel leakage ratio(ACLR) measurement with CDMA IS-95A 4FA and WCDMA 4FA signal, we obtained 16.52 dB improvement at the average output power of 41.5 dBm for digital cellular band, and 18.59 dB improvement at the average output power of 40 dBm for IMT-2000 band simultaneously.

Design of Phase Shift Lines in Linear Power Amplifier Using Shifted Photonic Bandgap (가변 PBG 천이격자를 이용한 선형증폭기 위상제어 선로 설계)

  • 윤진호;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.496-499
    • /
    • 2002
  • In this paper, a phase shifter with shifting photonic bandgap(PBG) cell in linear feedforward amplifier is designed and fabricated in 5GHz wireless LAN band. Now a day, the phase shifter has been fabricated with hybrid type. In this paper, a portion of PBG cell is shifted for the tuning phase. The phase shift was achieved maximum 80o in our PBG structure. Shifting PBG cell has been applied in feedforward main loop to cancel the main two tone signal.

Monolithic SiGe HBT Feedforward Variable Gain Amplifiers for 5 GHz Applications

  • Kim, Chang-Woo
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.386-388
    • /
    • 2006
  • Monolithic SiGe heterojunction bipolar transistor (HBT) variable gain amplifiers (VGAs) with a feedforward configuration have been newly developed for 5 GHz applications. Two types of the feedforward VGAs have been made: one using a coupled-emitter resistor and the other using an HBT-based current source. At 5.2 GHz, both of the VGAs achieve a dynamic gain-control range of 23 dB with a control-voltage range from 0.4 to 2.6 V. The gain-tuning sensitivity is 90 mV/dB. At $V_{CTRL}$= 2.4 V, the 1 dB compression output power, $P_{1-dB}$, and dc bias current are 0 dBm and 59 mA in a VGA with an emitter resistor and -1.8 dBm and 71mA in a VGA with a constant current source, respectively.

  • PDF

The Improvement of Linearity in Power Amplifier Using Anti Phase Intermodulation Distortion Linearization Technique (역위상 기법을 이용한 전력 증폭기 선형성 개선)

  • Jang, Jeong-Seok;Do, Ji-Hoon;Kang, Dong-Jin;Kim, Dae-Woong;Kim, Dae-Huo;Hong, Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.62-69
    • /
    • 2008
  • This paper proposes linearization technique that the linearity is improved by controlling IMD between the drive stage and the output stage. From the experimental results of W-CDMA 4FA input signal, this amplifier has ACLR of -48dBc@5MHz offset at 50W average power. Proposed linearization technique provides predistortion effect for using drive amplifier without additional circuit, which is the significant in this paper that it makes up for the weak point of analog predistortion method and feedforward method.

  • PDF

Implementation of Linear Power Amplifier with 1.9 GHz for PCS Basestation (1.9 GHZ PCS 기지국용 선형 전력증폭기의 제작)

  • Kim, Sang-Ki;Bang, Sung-Il
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.88-96
    • /
    • 2003
  • In this paper, We designed and implemented a linear high-power amplifier which can be used for the commercial service in band of $1.9GHz(1.93{\sim}1.99GHz)$ at U.S.A. The output power of the implemented linear high power amplifier is 25W. In order to satisfy IMD characters decided by FCC, the Feedforward linearization techniques has been used. The used feedforward method has improved the IMD characteristics from 10.51dBc to 19.01dBc in each power level from 1W(30dBm) to 25W(44dBm). The IMD level of the final output shows from minimum 64.84dBc to maximum 68.17dBc. Because this good characteristics of IMD, the LPA is expected to use as a commercial product of PCS base station.

  • PDF

Design & Fabrication of a Broadband SiGe HBT Variable Gain Amplifier using a Feedforward Configuration (Feedforward 구조를 이용한 광대역 SiGe HBT 가변 이득 증폭키의 설계 및 제작)

  • Chae, Kyu-Sung;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.497-502
    • /
    • 2007
  • Broadband monolithic SiGe HBT variable gain amplifier with a feedforward configuration have been newly developed to improve bandwidth and dB-linearly controlled gain characteristics. The VGA has been implemented in a $0.35-{\mu}m$ BiCMOS process. The VGA achieves a dynamic gain-control range of 19.6 dB and a 3-dB bandwidth of 4 GHz ($4{\sim}8\;GHz$) with the control-voltage range from 0.6 to 2.6 V. The VGA produces a maximum gain of 9.3 dB at 6 GHz and a output power of -3 dBm at 8 GHz.