• Title/Summary/Keyword: Feedback Scheme

Search Result 1,012, Processing Time 0.028 seconds

Design of an Output Feedback Variable Structure Control System (출력궤환 가변구조 제어계의 설계에 관한 연구)

  • 이기상;조동식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.883-892
    • /
    • 1992
  • In order to remove the assumption of full state availability which is one of the major difficulties with the practical realization of variable structure control system (VSCS), an output feedback variable structure control scheme for multivariable systems is proposed. The proposed output feedback VSCS is composed of a switching surfaces with dynamic structure and a new output feedback control input that can be constructed by using conventional output feedback control input design methodologies. With the proposed scheme, the practical realization of VSCS for the systems with unmeasurable states and for high order systems that conventional schemes cannot be applied is possible. Simulation results show that proposed scheme is a viable method to achieve the desired control performance, for example, good transient response, robustness against process parameter variations and external disturbance without measuring all the state variables.

Deep Reinforcement Learning based Antenna Selection Scheme For Reducing Complexity and Feedback Overhead of Massive Antenna Systems (거대 다중 안테나 시스템의 복잡도와 피드백 오버헤드 감소를 위한 심화 강화학습 기반 안테나 선택 기법)

  • Kim, Ryun-Woo;Jeong, Moo-Woong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1559-1565
    • /
    • 2021
  • In this paper, an antenna selection scheme is proposed in massive multi-user multiple input multiple output (MU-MIMO) systems. The proposed antenna selection scheme can achieve almost the same performance as a conventional scheme while significantly reducing the overhead of feedback by using deep reinforcement learning (DRL). Each user compares the channel gains of massive antennas in base station (BS) to the L-largest channel gain, converts them to one-bit binary numbers, and feed them back to BS. Thus, the feedback overhead can be significantly reduced. In the proposed scheme, DRL is adopted to prevent the performance loss that might be caused by the reduced feedback information. We carried out extensive Monte-Carlo simulations to analyze the performance of the proposed scheme and it was shown that the proposed scheme can achieve almost the same average sum-rates as a conventional scheme that is almost optimal.

Codebook-Based Interference Alignment for Uplink MIMO Interference Channels

  • Lee, Hyun-Ho;Park, Ki-Hong;Ko, Young-Chai;Alouini, Mohamed-Slim
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multiple-output (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base stations (BSs) through reliable backhaul links so that global channel knowledge is available for all BSs, which enables BS to compute he transmit precoder and inform its quantized index to the associated user via limited rate feedback link. We present an upper bound on the rate loss of the proposed scheme and derive the scaling law of the feedback load to maintain a constant rate loss relative to IA with perfect channel knowledge. Considering the impact of overhead due to training, cooperation, and feedback, we address the effective degrees of freedom (DOF) of the proposed scheme and derive the maximization of the effective DOF. From simulation results, we verify our analysis on the scaling law to preserve the multiplexing gain and confirm that the proposed scheme is more effective than the conventional IA scheme in terms of the effective DOF.

Robust feedback error learning neural networks control of robot systems with guaranteed stability

  • Kim, Sung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.197-200
    • /
    • 1996
  • This paper considers feedback error learning neural networks for robot manipulator control. Feedback error learning proposed by Kawato [2,3,5] is a useful learning control scheme, if nonlinear subsystems (or basis functions) consisting of the robot dynamic equation are known exactly. However, in practice, unmodeled uncertainties and disturbances deteriorate the control performance. Hence, we presents a robust feedback error learning scheme which add robustifying control signal to overcome such effects. After the learning rule is derived, the stability is analyzed using Lyapunov method.

  • PDF

A Dynamic Anti-windup Scheme for Input-constrained Feedback Linearizable Nonlinear Systems (궤환선형화 가능한 비선형 시스템의 입력제한을 고려한 동적 와인드엎 방지)

  • 윤성식;박종구;윤태웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.534-534
    • /
    • 2000
  • This paper proposes a dynamic compensation scheme for input-constrained feedback linearizable nonlinear systems to cope with the windup phenomenon. Given a feedback linearizing controller for such a nonlinear system designed without considering its input constraint, an additional dynamic compensator is proposed to account for the constraint. This dynamic anti-windup is based on the minimization of a reasonable performance index, and some stability properties of the resulting closed-loop are presented.

  • PDF

Adaptive Controllers for Feedback Linearizable Systems using Diffeomorphism

  • Park, H.L.;Lee, S.H.;J.T. Lime
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.443-443
    • /
    • 2000
  • A systematic scheme is developed fer the design of new adaptive feedback linearizing controllers for nonlinear systems. The developed adaptation law estimates the uncertain time-varying parameters using the structure of diffeomorphisrn. Our scheme is applicable to a class of nonlinear systems which violates the restrictive parametric-pure-feedback condition [4]-[6].

  • PDF

Adaptive Redundancy Scheme Using Channel State Estimation in Wireless LANs (무선 랜에서 채널 상태를 고려한 적응적 전송 방법)

  • 김선명;조영종
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.9-19
    • /
    • 2004
  • WLAN (Wireless Local Area Networks) needs error recovery and flow control schemes to support reliable multicast protocol. Limited wireless bandwidth, as well as queuing losses caused by the asymmetric wired/wireless interactions, demands more effective approaches for reducing packet losses. Moreover, since the wireless channel is a shared broadcast medium, if sender receives feedback information simultaneously from several receivers, the feedback delays data frame transmission of forward direction by introducing channel congestion and burden at the sender. Therefore, it is important to minimize the amount of feedback information from receivers. In this paper, we propose an ARS(Adaptive Redundancy Scheme) that combines FEC(Forward Error Correction) using channel state estimation and ARQ(Automatic Repeat Request) both to reduce the amount of feedback information and the number of retransmissions and to guarantee high data reliability in a WLAN multicast environment. Performance of the proposed scheme is evaluated by means of analysis and simulations in AWGN and Rayleigh fading channels. The results show that the proposed scheme reduces the amount of feedback information and the number of retransmissions and guarantees high data reliability, while keeping throughput efficiency similarly with the conventional FEC and ARQ scheme.

Coordinated Beamforming Systems with Channel Prediction in Time-varying MIMO Broadcast Channel (시변 다중입출력 방송 채널을 위한 채널예측이 적용된 협력 빔형성 시스템)

  • Kim, Jin;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper we propose a coordinated beamforming(CBF) scheme considering the effects of feedback quantization and delay in time-varying multiple-input multiple-output(MIMO) broadcast channels. By equal power allocation per data stream, the proposed CBF scheme transmits multiple data streams per user terminals without additional feedback overhead when quantized feedback information is used. The proposed CBF scheme also applies a linear channel predictor to each user terminals to prevent errors due to feedback delays that are not evitable in practical wireless systems. Each user terminal utilizes Wiener filter to predict future channel responses and generates feedback information based on the predicted channels. Consequently the proposed CBF scheme adapting Wiener filter improves system performances compared with the conventional scheme using delayed feedback.

Quantized Channel State Information Feedback Scheme for Multi-carrier Systems (다중 반송파 시스템을 위한 양자화된 채널 상태 정보 피드백 기법)

  • Seo Hee-Jung;Kim Seayoung;Kim Nak-Myeong;Kim Kiho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1146-1152
    • /
    • 2005
  • In this paper, we propose a compressed quantized channel state information (CQCSI) feedback scheme for multi-carrier mobile communication systems. The proposed CQCSI figures out the contiguous subsequences of equal QCSI's as separate types of runs across the subcarriers, and then encodes the types of runs using a truncated Huffman coding algorithm. Computer simulation shows that the proposed algorithm can reduce the QCSI feedback up to one tenth of the uncompressed, while providing a comparable performance with the conventional QCSI feedback schemes. To cope with special cases when the frequency selective fading is very high, we also propose a restricted CQCSI feedback scheme. The restricted CQCSI feedback has been proved under vehicular B channel model.

Design of Robust Controller for Systems with Time Delay (지연시간을 갖는 계통에 대한 강인한 제어기 설계)

  • 박귀태;이기상;김성호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.997-1005
    • /
    • 1990
  • Integral Error and State Feedback (IESF) controller which incorporates state feedback as a modern control scheme and integral action as a classical control scheme has better performance than that of conventional PID controller in linear time invariant system. But the structure of the IESF controller requires all the state variables of the system and is applicable only to pole assignable linear time invariant systems without time delay. Many industrial processes have large time delay and it is impossible to directly apply IESF control scheme to those processes. In this paper, a new controller structure, Modified Integral Error and State Feedback (MIESF) has been suggested in order to effectively control processes having time delay and its performance has been analyzed and its effectiveness has also been confirmed. As the proposed controller uses output feedback scheme based on integral error and state feedback (IESF) method, it can be simply designed by pole assignment algorithm irrespective of the order of the process. The MIESF controller can follow setpoint changes without overshoot. It is robuster than conventional Smith-Predictor plus PI(D) controller in case of occurring time delay mismatch and extra parameter mismatches between the process and the model. It can enhance control performance by intentional time delay mismatch.

  • PDF