• Title/Summary/Keyword: Feedback Order

Search Result 1,617, Processing Time 0.026 seconds

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

A Dual-Output Integrated LLC Resonant Controller and LED Driver IC with PLL-Based Automatic Duty Control

  • Kim, HongJin;Kim, SoYoung;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.886-894
    • /
    • 2012
  • This paper presents a secondary-side, dual-mode feedback LLC resonant controller IC with dynamic PWM dimming for LED backlight units. In order to reduce the cost, master and slave outputs can be generated simultaneously with a single LLC resonant core based on dual-mode feedback topologies. Pulse Frequency Modulation (PFM) and Pulse Width Modulation (PWM) schemes are used for the master stage and slave stage, respectively. In order to guarantee the correct dual feedback operation, Phased-Locked Loop (PLL)-based automatic duty control circuit is proposed in this paper. The chip is fabricated using $0.35{\mu}m$ Bipolar-CMOS-DMOS (BCD) technology, and the die size is $2.5mm{\times}2.5mm$. The frequency of the gate driver (GDA/GDB) in the clock generator ranges from 50 to 425 kHz. The current consumption of the LLC resonant controller IC is 40 mA for a 100 kHz operation frequency using a 15 V supply. The duty ratio of the slave stage can be controlled from 40% to 60% independent of the frequency of the master stage.

The Control Rod Speed Design for the Nuclear Reactor Power Control Using Optimal Control Theory (최적제어이론에 의한 원자로 제어봉속도의 설계)

  • Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.536-547
    • /
    • 1994
  • The state feedback optimal control techniques are used in designing the reactor control system. The mathematical plant model with the temperature feedback effects is established from the one delayed neutron group point kinetics equation and the singly lumped thermal-hydraulic balance equations, and is expressed in terms of state variables. The LQR (Linear Quadratic Regulator) control system is designed, being followed by the LQG (Linear Quadratic Gaussian) design to determine the optimal conditions of rod movement for the desired reactor power responses. And two different servo control schemes, the ordinary feedback system and the order increased regulating system, are proposed for the purpose of input tacking. The general control characteristics such as stability margins and output responses are discussed. Comparing each other, it is found that the order increased regulating system has far better control characteristics than the ordinary feedback system.

  • PDF

A Image Feedback control of Mobile Robot for Target Tracking (모바일 로봇의 목표물 추적을 위한 이미지 궤환 제어)

  • Hwang, Won-Jun;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.90-98
    • /
    • 2015
  • This research propose with image-based visual a new approach to design a feedback control of mobile robot. because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using camera, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is inmage-based visual feedback. Recently, image based visual feedback is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. in case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual feedback method that can reduce the curved trajectory of mobile robot in th cartesian space.

Sound Improvement of Violin Playing Robot Applying Auditory Feedback

  • Jo, Wonse;Yura, Jargalbaatar;Kim, Donghan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2378-2387
    • /
    • 2017
  • Violinists learn to make better sounds by hearing and evaluating their own playing though numerous practice. This study proposes a new method of auditory feedback, which mimics this violinists' step and verifies its efficiency using experiments. Making the desired sound quality of a violin is difficult without auditory feedback even though an expert violinist plays. An algorithm for controlling a robot arm of violin playing robot is determined based on correlations with bowing speed, bowing force, and sound point that determine the sound quality of a violin. The bowing speed is estimated by the control command of the robot arm, where the bowing force and the sound point are recognized by using a two-axis load cell and a photo interrupter, respectively. To improve the sound quality of a violin playing robot, the sounds information is obtained by auditory feedback system applied Short Time Fourier Transform (STFT) to the sounds from a violin. This study suggests Gaussian-Harmonic-Quality (GHQ) uses sounds' clarity, accuracy, and harmonic structure in order to decide sound quality, objectively. Through the experiments, the auditory feedback system improved the performance quality by the robot accordingly, changing the bowing speed, bowing force, and sound point and determining the quality of robot sounds by GHQ sound quality evaluation system.

A Study on Single-bit Feedback Multi-bit Sigma Delta A/D converter for improving nonlinearity

  • Kim, Hwa-Young;Ryu, Jang-Woo;Jung, Min-Chul;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.57-60
    • /
    • 2004
  • This paper presents multibit Sigma-Delta ADC using Leslie-Singh Structure to Improve nonlinearity of feedback loop. 4-bit flash ADC for multibit Quantization in Sigma Delta modulator offers the following advantages such as lower quantization noise, more accurate white-noise level and more stability over single quantization. For the feedback paths consisting of DAC, the DAC element should have a high matching requirement in order to maintain the linearity performance which can be obtained by the modulator with a multibit quantizer. Thus a Sigma-Delta ADC usually adds the dynamic element matching digital circuit within feedback loop. It occurs complexity of Sigma-Delta Circuit and increase of power dissipation. In this paper using the Leslie-Singh Structure for improving nonliearity of ADC. This structure operate at low oversampling ratio but is difficult to achieve high resolution. So in this paper propose improving loop filter for single-bit feedback multi-bit quantization Sigma-Delta ADC. It obtained 94.3dB signal to noise ratio over 615kHz bandwidth, and 62mW power dissipation at a sampling frequency of 19.6MHz. This Sigma Delta ADC is fabricated in 0.25um CMOS technology with 2.5V supply voltage.

  • PDF

System-Level Performance of Limited Feedback Schemes for Massive MIMO

  • Choi, Yongin;Lee, Jaewon;Rim, Minjoong;Kang, Chung Gu;Nam, Junyoung;Ko, Young-Jo
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.280-290
    • /
    • 2016
  • To implement high-order multiuser multiple input and multiple output (MU-MIMO) for massive MIMO systems, there must be a feedback scheme that can warrant its performance with a limited signaling overhead. The interference-to-noise ratio can be a basis for a novel form of Codebook (CB)-based MU-MIMO feedback scheme. The objective of this paper is to verify such a scheme's performance under a practical system configuration with a 3D channel model in various radio environments. We evaluate the performance of various CB-based feedback schemes with different types of overhead reduction approaches, providing an experimental ground with which to optimize a CB-based MU-MIMO feedback scheme while identifying the design constraints for a massive MIMO system.

Literature review of technologies and energy feedback measures impacting on the reduction of building energy consumption (건물에너지 사용 저감을 위한 에너지 피드백에 관한 기초연구)

  • Lee, Eun-Ju;Pae, Min-Ho;Jang, Ji-Hyeon;Kim, Dong-Ho;Kim, Jae-Min;Kim, Jong-Yeob
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.813-818
    • /
    • 2008
  • In order to reduce energy consumption, this study presents a way to energy reduction through energy-feedback which enables a household to self-recognize the need for energy reduction and respond to. The effect of this energy-feedback has been reported as $10{\sim}15%$ in average, and been actively investigated in abroad from 1970's while study in korea has been in its first step. In this study, examination on the cases of abroad study is made as it shows the effectiveness and applicability of energy feedback. And paradigms to consider for application to korea will be suggested anticipating the change of actions through energy feedback.

  • PDF

Outage Probability Analysis of Multiuser MISO Systems Exploiting Joint Spatial Diversity and Multiuser Diversity with Outdated Feedback

  • Diao, Chunjuan;Xu, Wei;Chen, Ming;Wu, Bingyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1573-1595
    • /
    • 2011
  • In this paper, the outage performance of multiuser multiple-input single-output (MISO) systems exploiting joint spatial and multiuser diversities is investigated for Rayleigh fading channels with outdated feedback. First, we derive closed-form exact outage probabilities for the joint diversity schemes that combine user scheduling with different spatial diversity techniques, including: 1) transmit maximum-ratio combining (TMRC); 2) transmit antenna selection (TAS); and 3) orthogonal space-time block coding (OSTBC). Then the asymptotic outage probabilities are analyzed to gain more insights into the effect of feedback delay. It is observed that with outdated feedback, the asymptotic diversity order of the multiuser OSTBC (M-OSTBC) scheme is equal to the number of transmit antennas at the base station, while that of the multiuser TMRC (M-TMRC) and the multiuser TAS (M-TAS) schemes reduce to one. Further by comparing the asymptotic outage probabilities, it is found that the M-TMRC scheme outperforms the M-TAS scheme, and the M-OSTBC scheme can perform best in the outage regime of practical interest when the feedback delay is large. Theoretical analysis is verified by simulation results.

Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving (적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발)

  • Oh, Kwangseok;Lee, Jongmin;Song, Taejun;Oh, Sechan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.