• Title/Summary/Keyword: Feed-angle

Search Result 255, Processing Time 0.022 seconds

A Development of Single Action Press Robot (프레스 단동로봇의 개발)

  • 허성창;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.261-264
    • /
    • 1997
  • A single action press robot, which consists of a driving unit, rotator, up-down feed base and feed bar, is developed and applied for the press automation. The driving unit is made up with a face cam and blade cam, which have a phase angle. The feeding system consists of a double speed-up apparatus and linear motion guides, and has a fast motion characteristics. A horizontal feeding speed of the feed bar is increased twice by the double speed-up apparatus. The driving mechanism could be simplified due to the speed-up of the feeding unit.

  • PDF

Machinability of ceramic and WC-Co green compacts (세라믹 및 초경합금 성형체의 피절삭성)

  • Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

On-line Estimation of Radial Immersion Ratio in Face Milling Using Cutting Force (정면 밀링에서 절삭력을 이용한 반경 방향 절입비의 실시간 추정)

  • Hwang, Ji-Hong;O, Yeong-Tak;Gwon, Won-Tae;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.178-185
    • /
    • 1999
  • In tool condition monitoring systems, parameters should be set to a certain threshold. In many cases, however, the threshold is dependent on cutting conditions, especially the radial immersion ratio. In this presented is a method of on-line estimation of the radial immersion ratio in face milling. When a tooth finishes sweeping, a sudden drop of cutting force occurs. The force drop is equal to the cutting force that acting on a tooth at the swept angle of cut and can be acquired from cutting force signals in feed and cross-feed directions. Average cutting force per tooth period can also be calculated from cutting force signals in two directions. The ratio to cutting forces in two directions acting on a tooth at a certain swept angle of cut and the ratio of average cutting forces in two directions per tooth period are functions of the swept angle of cut and the ratio of radial to tangential cutting forces. Using these parameters, the radial immersion ratio is estimated. Various experiments are performed to verify the proposed method. The results show that the radial immersion ratio can be estimated by this method regardless of other cutting conditions.

  • PDF

Monopulse L-Band Dipole Feed For The Satellite Tracking (위성 추적용 Monopulse L-Band Dipole Feed부의 제작)

  • Cheon, B.J.;Hong, S.Y.;Lee, J.H.;Ra, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.82-85
    • /
    • 1987
  • Electromagnetic waves from the satellite may be utilized to direct the tracking antenna toward the satellite. We design and fabricate the feed appropriate to the monopulse tracking technique which derive angle-error information on the basis of a single pulse. The feed consists of five cavity-backed turnstile elements mounted on a common ground plane. The turnstile dipole are connected to a set of five quadrature hybrids which convert the dual linear polarization into dual circular polarization. The five feed outputs are then processed in the monopulse comparator which is constructed in microstrip for compactness.

  • PDF

A Study on the Optimization of Sedimentation Efficiency through Controlling Stirring Speed and Baffle Angle (교반속도 및 Baffle 각도 조절에 따른 침전지 효율 최적화 연구)

  • Kwak, Sung-Keun;Kim, Choong-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.69-75
    • /
    • 2020
  • This study was conducted to improve the solid-liquid separation efficiency of clarifiers. To do so, the study did a bio-flocculation experiment simply by controlling the stirring speed (rpm) and baffle angle of a clarifier on a lab scale, but without using a coagulant. For the purpose of the experiment, the feed wall of a clarifier was so improved that a baffle could be installed on the clarifier. Then, it was ensured to change its stirring speed (to 0.0rpm, 0.6rpm, and 1.2rpm), with the angle fixed at 10°. As a result, it was found that concentration efficiency increased by 2.0%, and effluent removal efficiency (SS concentration) by 7.8%, at a stirring speed of 0.6ppm. This indicates the bio-coagulation efficiency of sludge increased with changing stirring speeds. Then, the baffle angle of the sedimentation unit was changed to analyze how the changed baffle angle would affect the sedimentation of sludge. As a result, it was found that the compression of sludge interface was very effective at a baffle angle of 20°. It is hoped that these experimental findings will be useful in improving the sedimentation efficiency of circular clarifiers.

CFD simulations of the fluid flow behavior in a spacer-filled membrane module

  • Jun, Chen L.;Xiang, Jia Y.;Dong, Hu Y.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.513-524
    • /
    • 2015
  • In this study, the effects of the angles of spacer filaments and the different feed Reynolds number on the fluid flow behavior have been investigated. Three-dimensional computational fluid dynamics (CFD) study is carried out for fluid flow through rectangular channels within different angles ($30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $60^{\circ}$, $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, $100^{\circ}$, $110^{\circ}$, $120^{\circ}$, respectively) between two filaments of spacer for membrane modules. The results show that the feed Reynolds number and the angles of spacer filaments have an important influence on pressure drop. While the feed Reynolds number is fixed, the optimal angle of spacer should be between $80^{\circ}$ to $90^{\circ}$, because the pressure drop is not only relatively small, but also high flow rate region expanded significantly with the increase of the angles between $80^{\circ}$ to $90^{\circ}$.The Contours of velocities and change of the average shear stress with the different angle of spacer filaments confirm the conclusion.

Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle- (선삭가공의 칩형상 해석 (I) -칩흐름각 해석-)

  • 이영문;최수준;우덕진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-144
    • /
    • 1991
  • Chip flow angle is one of the important factors to be determined for the scheme of Chip Control. Up to now, however, a dependable way to predict the chip flow angle in practical cutting has not been established satisfactorily. In this paper a rather simple theoretical prediction of chip flow angle is tried based on some already widely confirmed hypotheses. The developed equation of chip flow angle contains the parameters of depth of cut d, feed rate f, nose radius $r_{n}$ side cutting edge angle $C_{s}$, side rake angle .alpha.$_{s}$ and back rake angle .alpha.$_{b}$. Theoretical results of chip flow angle given by this study bas been shown in a good agreement with experimental ones.s.s.s.s.

5-axis Milling Machining Time Estimation based on Machine Characteristics (기계 특성에 근거한 5축 밀링가공 시간의 예측)

  • So, B.S.;Jung, Y.H.;Jeong, H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we present a machining time estimation algorithm for 5-axis high-speed machining. Estimation of machining time plays an important role in process planning and production scheduling of a shop. In contrast to the rapid evolution of machine tools and controllers, machining time calculation is still based on simple algorithms of tool path length divided by input feedrates of NC data, with some additional factors from experience. We propose an algorithm based on 5-axis machine behavior in order to predict machining time more exactly. For this purpose, we first investigated the operational characteristics of 5-axis machines. Then, we defined some dominant factors, including feed angle that is an independent variable for machining speed. With these factors, we have developed a machining time calculation algorithm that has a good accuracy not only in 3-axis machining, but also in 5-axis high-speed machining.

Formability of Flow Turning Process (플로우 터닝 공정에서의 성형성 연구)

  • Choi S.;Kim S. S.;Na K. H.;Cha D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.195-199
    • /
    • 2001
  • The flow turning process, an incremental forming process, is a cost-effective forming method for axi-symmetric intricate parts to net shape. However, the flow turning process shows a fairly complicated deformation, it is very difficult to obtain satisfactory results. Therefore extensive experimental and analytical research has not been carried out. In this study, an fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate(v ) and comer radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have an effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distributions of a multistage cup obtained by flow turning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Tool Wear of the Tungsten Carbide Tipped Circular Saw (초경팁 납접형 둥근톱의 공구 마멸)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-236
    • /
    • 2002
  • In this study, the carbon steels, SM20C were machined with the tungsten carbide tipped circular saw to clarify the cutting-off characteristics in terms of tool wear. The results show that an improved performance in view of both the tool wear and the cutting efficiency was obtained by using oil base cutting fluid at the cutting speed of 100m/min with the feed of 0.06mm/tooth. The rake angle of 10$^{\circ}$ , clearance angle of 8$^{\circ}$ , nose radius of R0.1mm, and end cutting edge champer of 0.1mm$\times$25$^{\circ}$ are believed as the best tool geometries. The tool wear decreases due to using the saw of the disk of STS5 and the tool material of P30.