DOI QR코드

DOI QR Code

CFD simulations of the fluid flow behavior in a spacer-filled membrane module

  • Jun, Chen L. (Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education) ;
  • Xiang, Jia Y. (Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education) ;
  • Dong, Hu Y. (Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education)
  • Received : 2014.11.04
  • Accepted : 2015.11.05
  • Published : 2015.11.25

Abstract

In this study, the effects of the angles of spacer filaments and the different feed Reynolds number on the fluid flow behavior have been investigated. Three-dimensional computational fluid dynamics (CFD) study is carried out for fluid flow through rectangular channels within different angles ($30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $60^{\circ}$, $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, $100^{\circ}$, $110^{\circ}$, $120^{\circ}$, respectively) between two filaments of spacer for membrane modules. The results show that the feed Reynolds number and the angles of spacer filaments have an important influence on pressure drop. While the feed Reynolds number is fixed, the optimal angle of spacer should be between $80^{\circ}$ to $90^{\circ}$, because the pressure drop is not only relatively small, but also high flow rate region expanded significantly with the increase of the angles between $80^{\circ}$ to $90^{\circ}$.The Contours of velocities and change of the average shear stress with the different angle of spacer filaments confirm the conclusion.

Keywords

References

  1. Ahmad, A.L. and Lau, K.K. (2006), "Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel", J. Membr. Sci., 286(1-2), 77-92. https://doi.org/10.1016/j.memsci.2006.09.018
  2. Ahmad, A.L., Lau, K.K. and Abu Bakar, M.Z. (2005), "Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel", J. Membr. Sci., 262(1-2), 138-152. https://doi.org/10.1016/j.memsci.2005.06.056
  3. Al-Sharif, S., Albeirutty, M., Cipollina, A. and Micale, G. (2013), "Modeling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code", Desalination, 311, 103-112. https://doi.org/10.1016/j.desal.2012.11.005
  4. Balster, J., Punt, I., Stamatialis, D.F. and Wessling, M. (2006), "Multi-layer spacer geometries with improved mass transport", J. Membr. Sci., 282(1-2), 351-361. https://doi.org/10.1016/j.memsci.2006.05.039
  5. Balster, J., Stamatialis, D.F. and Wesslinga, M. (2010), "Membrane with integrated spacer", J. Membr. Sci., 360(1-2), 185-189. https://doi.org/10.1016/j.memsci.2010.05.011
  6. Cao, Z., Wiley, D.E. and Fane, A.G. (2001), "CFD simulations of net-type turbulence promoters in a narrow channel", J. Membr. Sci., 185(2), 157-176. https://doi.org/10.1016/S0376-7388(00)00643-8
  7. Delyannis, E. and Belessiotis, V. (2010), "Desalination: The recent development path", Desalination, 264(3), 206-213. https://doi.org/10.1016/j.desal.2010.05.045
  8. Deng, D., Aouad, W., Braff, W.A., Schlumpberger, S., Suss, M.E. and Bazant, M.Z. (2015), "Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection", Desalination, 357, 77-83. https://doi.org/10.1016/j.desal.2014.11.011
  9. Dhananjay, D., Sandeep, K.K. and Kumar, A. (2005), "Flow visualization through spacer filled channels by computationalfluid dynamics-II: improved feed spacer designs", J. Membr. Sci., 249(1-2), 41-49. https://doi.org/10.1016/j.memsci.2004.06.062
  10. Garcia-Vasquez, W., Dammak, L., Larchet, C., Nikonenko, V., Pismenskaya, N. and Grande, D. (2013), "Evolution of anion-exchange membrane properties in a full scale electrodialysis stack", J. Membr. Sci.,446(1), 255-265. https://doi.org/10.1016/j.memsci.2013.06.042
  11. Khawaji, A.D., Kutubkhanah, I.K. and Wie, J.M. (2008), "Advances in seawater desalination technologies", Desalination, 221(1), 47-69. https://doi.org/10.1016/j.desal.2007.01.067
  12. Kodym, R., Vlasak, F., Snita, D., Cernin, A. and Bouzek, K. (2011), "Spatially two-dimensional mathematical model of the flow hydrodynamics in a channel filled with a net-like spacer", J. Membr. Sci., 368(1-2), 171-183. https://doi.org/10.1016/j.memsci.2010.11.042
  13. Koutsou, C.P., Yiantsios, S.G. and Karabelas, A.J. (2007), "Direct numerical simulation of flow in spacerfilled channels: Effect of spacer geometrical characteristics", J. Membr. Sci., 291(1-2), 53-69. https://doi.org/10.1016/j.memsci.2006.12.032
  14. Li, Y.L. and Tung, K.L. (2008), "CFD simulation of fluid flow through spacer-filled membrane module:selecting suitable cell types for periodic boundary conditions", Desalination, 233(1-3), 351-358. https://doi.org/10.1016/j.desal.2007.09.061
  15. Li, F., Meindersma, W., de Haan, A.B. and Reith, T. (2002), "Optimization of commercial net spacers in spiral wound membrane modules", J. Membr. Sci., 208(1-2), 289-302. https://doi.org/10.1016/S0376-7388(02)00307-1
  16. Li, F., Meindersma, W., de Haan, A.B. and Reith, T. (2004), "Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers", J. Membr. Sci., 232(1-2), 19-30. https://doi.org/10.1016/j.memsci.2003.11.015
  17. Lipnizki, J. and Jonsson, G. (2002), "Flow dynamics and concentration polarisation in spacer-filled channels", Desalination, 146(1-3), 213-217. https://doi.org/10.1016/S0011-9164(02)00474-5
  18. Pouliot, Y. (2008), "Membrane processes in dairy technology-From a simple idea to worldwide panacea", Int. Dairy J., 18(7), 735-740. https://doi.org/10.1016/j.idairyj.2008.03.005
  19. Sandeep, K.K. and Kumar, A. (2001), "Flow visualization through spacer filled channels by computational fluid dynamics I. Pressure drop and shear rate calculations for flat sheet geometry", J. Membr. Sci., 193(1), 69-84. https://doi.org/10.1016/S0376-7388(01)00494-X
  20. Saremirad, P., Gomaa, H.G. and Zhu, J. (2012), "Effect of flow oscillations on mass transfer in electrodialysis with bipolar membrane", J. Membr. Sci., 405(1), 158-166.
  21. Shakaib, M., Hasani, S.M.F. and Mahmood, M. (2007), "Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling", J. Membr. Sci., 297(1-2), 74-89. https://doi.org/10.1016/j.memsci.2007.03.010
  22. Shakaib, M., Hasani, S.M.F. and Mahmood, M. (2009), "CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels", J. Membr. Sci., 326(2), 270-284. https://doi.org/10.1016/j.memsci.2008.09.052
  23. Sousa, P., Soares, A., Monteiro, E. and Rouboa, A. (2014), "A CFD study of the hydrodynamics in a desalination membrane filled with spacers", Desalination, 349, 22-30. https://doi.org/10.1016/j.desal.2014.06.019
  24. Strathmann, H. (2010), "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264(3), 268-288. https://doi.org/10.1016/j.desal.2010.04.069
  25. Walker, W.S., Kim, Y. and Lawler, D.F. (2014), "Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis-Part I: Sensitivity to superficial velocity", Desalination, 344, 152-162. https://doi.org/10.1016/j.desal.2014.03.035

Cited by

  1. Flow behavior in weakly permeable micro-tube with varying viscosity near the wall vol.19, pp.4, 2017, https://doi.org/10.1515/pjct-2017-0062
  2. Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation vol.7, pp.5, 2016, https://doi.org/10.12989/mwt.2016.7.5.463