Browse > Article
http://dx.doi.org/10.12989/mwt.2015.6.6.513

CFD simulations of the fluid flow behavior in a spacer-filled membrane module  

Jun, Chen L. (Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education)
Xiang, Jia Y. (Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education)
Dong, Hu Y. (Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education)
Publication Information
Membrane and Water Treatment / v.6, no.6, 2015 , pp. 513-524 More about this Journal
Abstract
In this study, the effects of the angles of spacer filaments and the different feed Reynolds number on the fluid flow behavior have been investigated. Three-dimensional computational fluid dynamics (CFD) study is carried out for fluid flow through rectangular channels within different angles ($30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $60^{\circ}$, $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, $100^{\circ}$, $110^{\circ}$, $120^{\circ}$, respectively) between two filaments of spacer for membrane modules. The results show that the feed Reynolds number and the angles of spacer filaments have an important influence on pressure drop. While the feed Reynolds number is fixed, the optimal angle of spacer should be between $80^{\circ}$ to $90^{\circ}$, because the pressure drop is not only relatively small, but also high flow rate region expanded significantly with the increase of the angles between $80^{\circ}$ to $90^{\circ}$.The Contours of velocities and change of the average shear stress with the different angle of spacer filaments confirm the conclusion.
Keywords
computational fluid dynamics (CFD); membrane spacers; pressure drop;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmad, A.L. and Lau, K.K. (2006), "Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel", J. Membr. Sci., 286(1-2), 77-92.   DOI
2 Ahmad, A.L., Lau, K.K. and Abu Bakar, M.Z. (2005), "Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel", J. Membr. Sci., 262(1-2), 138-152.   DOI
3 Al-Sharif, S., Albeirutty, M., Cipollina, A. and Micale, G. (2013), "Modeling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code", Desalination, 311, 103-112.   DOI
4 Balster, J., Punt, I., Stamatialis, D.F. and Wessling, M. (2006), "Multi-layer spacer geometries with improved mass transport", J. Membr. Sci., 282(1-2), 351-361.   DOI
5 Balster, J., Stamatialis, D.F. and Wesslinga, M. (2010), "Membrane with integrated spacer", J. Membr. Sci., 360(1-2), 185-189.   DOI
6 Cao, Z., Wiley, D.E. and Fane, A.G. (2001), "CFD simulations of net-type turbulence promoters in a narrow channel", J. Membr. Sci., 185(2), 157-176.   DOI
7 Delyannis, E. and Belessiotis, V. (2010), "Desalination: The recent development path", Desalination, 264(3), 206-213.   DOI
8 Deng, D., Aouad, W., Braff, W.A., Schlumpberger, S., Suss, M.E. and Bazant, M.Z. (2015), "Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection", Desalination, 357, 77-83.   DOI
9 Dhananjay, D., Sandeep, K.K. and Kumar, A. (2005), "Flow visualization through spacer filled channels by computationalfluid dynamics-II: improved feed spacer designs", J. Membr. Sci., 249(1-2), 41-49.   DOI
10 Garcia-Vasquez, W., Dammak, L., Larchet, C., Nikonenko, V., Pismenskaya, N. and Grande, D. (2013), "Evolution of anion-exchange membrane properties in a full scale electrodialysis stack", J. Membr. Sci.,446(1), 255-265.   DOI
11 Khawaji, A.D., Kutubkhanah, I.K. and Wie, J.M. (2008), "Advances in seawater desalination technologies", Desalination, 221(1), 47-69.   DOI
12 Kodym, R., Vlasak, F., Snita, D., Cernin, A. and Bouzek, K. (2011), "Spatially two-dimensional mathematical model of the flow hydrodynamics in a channel filled with a net-like spacer", J. Membr. Sci., 368(1-2), 171-183.   DOI
13 Koutsou, C.P., Yiantsios, S.G. and Karabelas, A.J. (2007), "Direct numerical simulation of flow in spacerfilled channels: Effect of spacer geometrical characteristics", J. Membr. Sci., 291(1-2), 53-69.   DOI
14 Li, Y.L. and Tung, K.L. (2008), "CFD simulation of fluid flow through spacer-filled membrane module:selecting suitable cell types for periodic boundary conditions", Desalination, 233(1-3), 351-358.   DOI
15 Li, F., Meindersma, W., de Haan, A.B. and Reith, T. (2002), "Optimization of commercial net spacers in spiral wound membrane modules", J. Membr. Sci., 208(1-2), 289-302.   DOI
16 Li, F., Meindersma, W., de Haan, A.B. and Reith, T. (2004), "Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers", J. Membr. Sci., 232(1-2), 19-30.   DOI
17 Lipnizki, J. and Jonsson, G. (2002), "Flow dynamics and concentration polarisation in spacer-filled channels", Desalination, 146(1-3), 213-217.   DOI
18 Pouliot, Y. (2008), "Membrane processes in dairy technology-From a simple idea to worldwide panacea", Int. Dairy J., 18(7), 735-740.   DOI
19 Saremirad, P., Gomaa, H.G. and Zhu, J. (2012), "Effect of flow oscillations on mass transfer in electrodialysis with bipolar membrane", J. Membr. Sci., 405(1), 158-166.
20 Sandeep, K.K. and Kumar, A. (2001), "Flow visualization through spacer filled channels by computational fluid dynamics I. Pressure drop and shear rate calculations for flat sheet geometry", J. Membr. Sci., 193(1), 69-84.   DOI
21 Shakaib, M., Hasani, S.M.F. and Mahmood, M. (2007), "Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling", J. Membr. Sci., 297(1-2), 74-89.   DOI
22 Shakaib, M., Hasani, S.M.F. and Mahmood, M. (2009), "CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels", J. Membr. Sci., 326(2), 270-284.   DOI
23 Sousa, P., Soares, A., Monteiro, E. and Rouboa, A. (2014), "A CFD study of the hydrodynamics in a desalination membrane filled with spacers", Desalination, 349, 22-30.   DOI
24 Strathmann, H. (2010), "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264(3), 268-288.   DOI
25 Walker, W.S., Kim, Y. and Lawler, D.F. (2014), "Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis-Part I: Sensitivity to superficial velocity", Desalination, 344, 152-162.   DOI