• Title/Summary/Keyword: Feed-Forward Control

Search Result 261, Processing Time 0.022 seconds

A study on the adaptive control used in a system with variable load (가변부하시스템에서의 적응제어에 관한 연구)

  • 강대규;전내석;이성근;김윤식;안병원;박영산
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.397-400
    • /
    • 2001
  • This paper proposed a speed adaptive control system with load torque observer and feed-forward compensation using neural network for air compressor system driven an induction motor. The motor receive impact load change under the influence of piston movement of up and down, and so it difficult to obtain good speed control characteristics. With real-time adjusting control gain estimated in neural network, control characteristics of motor is improved. The validity of the proposed system is confirmed through the theoretical analysis and computer simulation.

  • PDF

Performance Evaluation of Islanding Detection Method by Phase Shifted Feed-Forward Voltage in Steady-State Grid Condition (전향보상 전압의 위상 변화를 통한 단독운전 검출 방법의 계통 정상 상태의 성능 평가)

  • Kim, Dong-Uk;Kim, Sungmin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.373-380
    • /
    • 2018
  • This study proposes a new islanding detection method that uses the phase shift of feed-forward voltage and evaluates the performance of an existing method and the proposed method when the grid frequency changes within the allowable range under steady-state conditions. The investigated existing method, which is slip mode frequency shift (SMS), uses current phase shift to detect islanding. The SMS method supplies reactive current to the grid under this condition, but the proposed method does not generate additional reactive power because it does not depend on the current control loop. The performance in steady-state grid condition is evaluated through simulations and experiments.

Advanced RMS Calculation Method for the ITER CS, VS1, CC AC/DC Converter

  • Kim, S.M.;Suh, J.H.;Park, H.J.;Oh, J.S.;Yoo, M.H.
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.301-302
    • /
    • 2019
  • ITER CS, VS, CC AC/DC Converter는 4상한 동작을 하며, PCS(Plasma Control System)에서 명령하는 출력 전압 제어를 컨버터 교류 입력 전압 변동을 보상하는 Feed-forward 방식을 사용한다. Feed-forward 제어를 위하여 교류 입력 전압에 대한 실시간 정밀 측정이 가능한 RMS 계산이 필요하다. 본 논문은 RMS 연산에 대한 개선된 방법을 제안하면서 시뮬레이션과 실험을 통해 해당 알고리즘을 검증하였고 이에 대한 내용을 논의하고자 한다.

  • PDF

An RMRAC Controller for Permanent Magnet Synchronous Motor Based On Modified Current Dynamics (보정된 전류동역학에 기반한 영구자석 전동기의 참조모델 강인적응제어기)

  • Jin, Hong-Zhe;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.991-997
    • /
    • 2008
  • A new RMRAC scheme far the PMSM current regulation is proposed in a synchronous frame, which is completely free from the parameter's uncertainty. A current regulator of PMSM is the inner most loop of electromechanical driving systems and plays a foundation role in the control hierarchy. When the PMSM runs in high speed, the cross-coupling terms must be compensated precisely for large system BW. In the proposed RMRAC, the input signal is composed of a calculated voltage defined by MRAC law and an output of the disturbance compensator. The gains of feed forward and feedback controller are estimated by the proposed modified gradient method, where the system disturbances are assumed as filtered current regulation errors. After the compensation of the system disturbance from error information, the corresponding voltage is fed forward to control input to compensate for real disturbances. The proposed method robustly compensates the system disturbance and cross-coupling terms. It also shows a good realtime performance due to the simplicity of control structure. Through real experiments, the efficiency of the proposed method is verified.

A High-Performance Induction Motor Drive with 2DOF I-PD Model­Following Speed Controller

  • El-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.217-227
    • /
    • 2004
  • A robust controller that combines the merits of the feed-back, feed-forward and model-following control for induction motor drives utilizing field orientation control is designed in this paper. The proposed controller is a two-degrees-of­freedom (2DOF) integral plus proportional & rate feedback (I-PD) speed controller combined with a model-following (2DOF I-PD MFC) speed controller. A systematic mathematical procedure is derived to find the parameters of the 2DOF I-PD MFC speed controller according to certain specifications for the drive system. Initially, we start with the I-PD feed­back controller design, then we add the feed-forward controller. These two controllers combine to form the 2DOF I-PD speed controller. To realize high dynamic performance for disturbance rejection and set point tracking characterisitics, a MFC controller is designed and added to the 2DOF I-PD controller. This combination is called a 2DOF I-PD MFC speed controller. We then study the effect of the 2DOF I-PD MFC speed controller on the performance of the drive system under different operating conditions. A computer simulation is also run to demonstrate the effectiveness of the proposed controller. The results verify that the proposed 2DOF I-PD MFC controller is more accurate and more reliable in the presence of load disturbance and motor parameter variations than a 2DOF I-PD controller without a MFC. Also, the proposed controller grants rapid and accurate responses to the reference model, regardless of whether a load disturbance is imposed or the induction machine parameters vary.

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

Design of Active Magnetic Bearing System for Moving Vehicles (이동 차량 탑재용 전자기 베어링 시스템 설계)

  • Kim, Ha-Yong;Sim, Hyun-Sik;Lee, Chong-Won;Kang, Tae-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.364-370
    • /
    • 2005
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

Low-frequency Vibration Suppression Control in a Two-mass System by Using a Torque Feed-forward and Disturbance Torque Observer

  • Li, Qiong;Xu, Qiang;Wu, Ren
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.249-258
    • /
    • 2016
  • Given that elastic connection is often used between motor drives and load devices in industrial applications, vibration often occurs at the load side. Vibration suppression is a crucial problem that needs to be addressed to achieve a high-performance servo-control system. Scholars have presented many strategies to suppress vibration. In this study, we propose a method to diminish vibration by using a torque feed-forward and disturbance torque observer. We analyze the system performance and explain the principle of the proposed vibration suppression method based on the transfer functions of the system. The design of controller parameters is another important issue in practical applications. We accordingly provide a succinct outline of the design specifications based on the coefficient diagram method. Furthermore, we build a model under the Simulink environment and conduct experiments to validate the proposed method. Results show that speed and position vibrations are successfully suppressed by the proposed method.

Design of active magnetic bearing system for moving vehicles (이동 차량 탑재용 전자기 베어링 시스템 설계)

  • Kim, Ha-Yong;Sim, Hyun-Sik;Lee, Chong-Won;Kang, Tae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.486-489
    • /
    • 2004
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

  • PDF

Dynamic Characteristics Improvement of a Step-Down Chopper Using Load Current Feed-Forward Compensator (부하전류 전향보상기를 이용한 강압쵸퍼의 동특성 항상)

  • Chun, Ji-Young;Jeon, Kee-Young;Chung, Chun-Byung;Han, Kyung-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper, The author present a load current feed-forward compensator by method that improve voltage controller of Step-down Chopper to get stable output voltage to sudden change of load current. To confirm the characteristics of a presented load current feed-forward compensator compared each transfer function of whole system that load current feed-forward compensator is added with transfer function of whole system that existent voltage controller is included using Mason gains formula in Root locus and Bode diagram. As a result the pole of system is improved, extreme point of the wave and system improves, and size of peak value and phase margin of break frequency in resonance frequency confirmed that is good. Therefore, presented control technique could confirm that reduce influence by perturbation and improves stationary state and dynamic characteristics in output of Step-down Chopper.