• Title/Summary/Keyword: Features Extraction

Search Result 1,480, Processing Time 0.025 seconds

Extraction of Informative Features for Automatic Indexation of Human Sensibility Ergonomic Documents (감성공학 문서 데이터의 지표 자동화를 위한 코퍼스 분석 기반 특성정보 추출)

  • 배희숙;곽현민;채균식;이상태
    • Science of Emotion and Sensibility
    • /
    • v.7 no.2
    • /
    • pp.133-140
    • /
    • 2004
  • A large number of indices are produced from human sensibility ergonomic data, which are accumulated by the project "Study on the Development of Web-Based Database System of Human Sensibility and its Support". Since the research in this field will be increased rapidly, it is necessary to automate the index processing of human sensibility ergonomic data. From the similarity between indexation and summarization, we propose the automation of this process. In this paper, we study on extraction of keywords, information types and expression features that are considered as basic elements of following techniques for automatic summarization: classification of documents, extraction of information types and linguistic features. This study can be applied to automatic summarization system and knowledge management system in the domain of human sensibility ergonomics.rgonomics.

  • PDF

EXTRACTION OF LANE-RELATED INFORMATION AND A REAL-TIME IMAGE PROCESSING ONBOARD SYSTEM

  • YI U. K.;LEE W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.171-181
    • /
    • 2005
  • The purpose of this paper is two-fold: 1) A novel algorithm in order to extract lane-related information from road images is presented; 2) Design specifications of an image processing onboard unit capable of extracting lane­related information in real-time is also presented. Obtaining precise information from road images requires many features due to the effects of noise that eventually leads to long processing time. By exploiting a FPGA and DSP, we solve the problem of real-time processing. Due to the fact that image processing of road images relies largely on edge features, the FPGA is adopted in the hardware design. The schematic configuration of the FPGA is optimized in order to perform 3 $\times$ 3 Sobel edge extraction. The DSP carries out high-level image processing of recognition, decision, estimation, etc. The proposed algorithm uses edge features to define an Edge Distribution Function (EDF), which is a histogram of edge magnitude with respect to the edge orientation angle. The EDF enables the edge-related information and lane-related to be connected. The performance of the proposed system is verified through the extraction of lane-related information. The experimental results show the robustness of the proposed algorithm and a processing speed of more than 25 frames per second, which is considered quite successful.

Dual Branched Copy-Move Forgery Detection Network Using Rotation Invariant Energy in Wavelet Domain (웨이블릿 영역에서 회전 불변 에너지 특징을 이용한 이중 브랜치 복사-이동 조작 검출 네트워크)

  • Jun Young, Park;Sang In, Lee;Il Kyu, Eom
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.309-317
    • /
    • 2022
  • In this paper, we propose a machine learning-based copy-move forgery detection network with dual branches. Because the rotation or scaling operation is frequently involved in copy-move forger, the conventional convolutional neural network is not effectively applied in detecting copy-move tampering. Therefore, we divide the input into rotation-invariant and scaling-invariant features based on the wavelet coefficients. Each of the features is input to different branches having the same structure, and is fused in the combination module. Each branch comprises feature extraction, correlation, and mask decoder modules. In the proposed network, VGG16 is used for the feature extraction module. To check similarity of features generated by the feature extraction module, the conventional correlation module used. Finally, the mask decoder model is applied to develop a pixel-level localization map. We perform experiments on test dataset and compare the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the proposed scheme outperforms the existing approaches.

Feature Extraction of ECG Signal for Heart Diseases Diagnoses (심장질환진단을 위한 ECG파형의 특징추출)

  • Kim, Hyun-Dong;Min, Chul-Hong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.325-327
    • /
    • 2004
  • ECG limb lead II signal widely used to diagnosis heart diseases and it is essential to detect ECG events (onsets, offsets and peaks of the QRS complex P wave and T wave) and extract them from ECG signal for heart diseases diagnoses. However, it is very difficult to develop standardized feature extraction formulas since ECG signals are varying on patients and disease types. In this paper, simple feature extraction method from normal and abnormal types of ECG signals is proposed. As a signal features, heart rate, PR interval, QRS interval, QT interval, interval between S wave and baseline, and T wave types are extracted. To show the validity of proposed method, Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Sinus Bradycardia, and Sinus Tachycardia data from MIT-BIH arrhythmia database are used for feature extraction and the extraction results showed higher extraction capability compare to conventional formula based extraction method.

  • PDF

Features Extraction and Mechanism Analysis of Partial Discharge Development under Protrusion Defect

  • Dong, Yu-Lin;Tang, Ju;Zeng, Fu-Ping;Liu, Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.344-354
    • /
    • 2015
  • In order to study the development of partial discharge (PD) under typical protrusion defects in gas-insulated switchgear, we applied step voltages on the defect and obtained the ${\varphi}-u$ and ${\varphi}-n$ spectrograms of ultra-high frequency (UHF) PD signals in various PD stages. Furthermore, we extracted seven kinds of features to characterize the degree of deterioration of insulation and analyzed their values, variation trends, and change rates. These characteristics were inconsistent with the development of PD. Hence, the differences of these features could describe the severity of PD. In addition, these characteristics could provide integrated characteristics regarding PD development and improve the reliability of PD severity assessment because these characteristics were extracted from different angles. To explain the variation laws of these seven kinds of parameters, we analyzed the relevant physical mechanism by considering the microphysical process of PD formation and development as well as the distortion effect generated by the space charges on the initial field. The relevant physical mechanism effectively allocated PD severity among these features for assessment, and the effectiveness and reliability of using these features to assess PD severity were proved by testing a large number of PD samples.

Spatial-temporal texture features for 3D human activity recognition using laser-based RGB-D videos

  • Ming, Yue;Wang, Guangchao;Hong, Xiaopeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1595-1613
    • /
    • 2017
  • The IR camera and laser-based IR projector provide an effective solution for real-time collection of moving targets in RGB-D videos. Different from the traditional RGB videos, the captured depth videos are not affected by the illumination variation. In this paper, we propose a novel feature extraction framework to describe human activities based on the above optical video capturing method, namely spatial-temporal texture features for 3D human activity recognition. Spatial-temporal texture feature with depth information is insensitive to illumination and occlusions, and efficient for fine-motion description. The framework of our proposed algorithm begins with video acquisition based on laser projection, video preprocessing with visual background extraction and obtains spatial-temporal key images. Then, the texture features encoded from key images are used to generate discriminative features for human activity information. The experimental results based on the different databases and practical scenarios demonstrate the effectiveness of our proposed algorithm for the large-scale data sets.

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

Content-Based Image Retrieval Using Visual Features and Fuzzy Integral (시각 특징과 퍼지 적분을 이용한 내용기반 영상 검색)

  • Song Young-Jun;Kim Nam;Kim Mi-Hye;Kim Dong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.5
    • /
    • pp.20-28
    • /
    • 2006
  • This paper proposes visual-feature extraction for each band in wavelet domain with both spatial frequency features and multi resolution features, and the combination of visual features using fuzzy integral. In addition, it uses color feature expression method taking advantage of the frequency of the same color after color quantization for reducing quantization error, a disadvantage of the existing color histogram intersection method. Also, it is found that the final similarity can be represented in a linear combination of the respective factors(Homogram, color, energy) when each factor is independent one another. With respect to the combination patterns the fuzzy measurement is defined and the fuzzy integral is taken. Experiments are peformed on a database containing 1,000 color images. The proposed method gives better performance than the conventional method in both objective and subjective performance evaluation.

  • PDF

An Improved Feature Extraction Technique of Asterias Amurensis using 6-Directional Scanning and Centers of Region (6-방향 스캐닝과 영역 중심점을 이용한 아무르불가사리의 개선된 특징 추출 기법)

  • Shin, Hyun-Deok;Chu, Ran-Heui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • Korea has developed coastal farming industry due to the environmental characteristics that its three sides are surrounded by sea. The damage of coastal farming industry caused by Asterias Amurensis with very strong reproductive rate and predaciousness has increased sharply every year. Moreover, Asterias Amurensis preys on living fish and shellfish and so the damage of fishermen is vern greater. In this paper, a method is proposed to extract effectively the features from the image of Asterias Amurensis acquired in the water. Because the proposed method extracts convex features using 6-directional scanning, it selects a fewer number of feature candidates than the conventional one. In addition, after selecting candidate concave points using the extracted convex features and centers of region, the final concave features are extracted. Due to the features of the starfish which lives in groups, individuals of the starfish in the input image are concentrated. Thus, it is significant to minimize the number of feature candidates extracted from the input image. The experimental results indicate an improvement of the proposed feature extraction method over the conventional one as evidenced by the fact that the feature extract was 88 % of the feature candidates.

AUTOMATIC DETECTION Of NARROW OPEN WATER STREAMS IN AMAZON FORESTS FROM JERS-1 SAR IMAGERY

  • Amano, Takako-Sakurai;Iisaka, Joji;Kamiyama, Masataka;Takagi, Mikio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.310-315
    • /
    • 1999
  • We extracted narrow open water streams from JERS-1 SAR images of the Amazon rain forest. The extracted range of these streams were almost comparable to a high level extraction of the same streams from near-IR images of JERS-1 VNIR data notwithstanding that these features in SAR images show the strong dependence of the observation angle. Large water bodies are relatively easy to extract from JERS-1 SAR images, as they tend to appear as very dark areas; but streams whose width is nearly equal to or less than the spatial resolution no longer appear as very dark features. By using strong scatterers distributed sparsely along the radar facing sides of the streams, we can successfully estimate approximate ranges of waterways and then extract relatively dark line-like features within these ranges.

  • PDF