• 제목/요약/키워드: Feature space

검색결과 1,367건 처리시간 0.043초

HMM인식기 상에서 방향, 속도 및 공간 특징량에 따른 제스처 인식 성능 비교 ((A Comparison of Gesture Recognition Performance Based on Feature Spaces of Angle, Velocity and Location in HMM Model))

  • 윤호섭;양현승
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.430-443
    • /
    • 2003
  • 본 논문은 카메라로부터 획득된 영상 시퀀스로부터 얻어진 제스처 궤적 정보를 바탕으로 가장 기본적인 방향, 속도 및 공간 특징을 추출한 후, 각각의 특징 정보들의 인식 결과를 비교하여 어떠한 정보가 가장 유용한지 평가한다. 이를 위해 제스처 궤적 추적을 위해선 컬러 정보 및 모션 정보를 사용하였고, 인식모델로는 시간 데이타 처리에 적합한 HMM을 구성하였다. 실험을 위한 제스처 DB로는 인식하고자 하는 그래픽, 숫자, 알파벳모양의 48개 제스처에 대해 20명으로부터 5개씩 총 4800개의 데이타를 구축하였다.

볼 나사 구동형 로봇 그리퍼 설계 및 특성 분석 (Design and Analysis of Ball Screw-driven Robotic Gripper)

  • 김병호
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.22-27
    • /
    • 2012
  • 본 논문에서는 볼 나사의 구동에 의해 물체의 파지가 가능한 로봇 그리퍼 메커니즘을 제시한 후, 시뮬레이션을 통하여 제시한 그리퍼 메커니즘의 파지 동작에서 나타날 수 있는 기구학적인 특성을 분석한다. 이를 위하여 구동기의 관절 공간과 그리퍼의 끝 공간간의 기구학적 관계를 파악한다. 제안한 로봇 그리퍼는 하나의 구동모터를 사용하고, 좌우 대칭인 폐체인(closed-chain)을 형성하고 있는 것이 특징이다. 결과적으로, 제안한 로봇 그리퍼는 구조적으로 외력에 강인하고, 하나의 구동모터에 의해 파지 동작이 구현되므로 수월한 파지가 가능하다. 또한 제안된 그리퍼는 파워 파지에 유용한 조임 효과를 갖는다.

압전센서를 이용하는 철로에서의 손상 검색 기술 (Damage Detection of Railroad Tracks Using Piezoelectric Sensors)

  • 윤정방;박승희;다니엘 인만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

Wide-Field Near-IR Photometric Study for Spatial Distribution of Stars around Globular Clusters in the Galactic Bulge

  • Chang, Cho-Rhong;Chun, Sang-Hyun;Han, Mi-Hwa;Jung, Mi-Young;Lim, Dong-Wook;Sohn, Young-Jong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.29.4-30
    • /
    • 2009
  • Extra-tidal feature of the globular clusters such as tidal tails and halos can be a crucial evidence of the merging scenario of the Galaxy formation in the dynamical point of view. To search for such an extra-tidal feature of globular clusters located in the Galactic bulge(RGC<3kpc), we obtained wide-field near-infrared JHKs images of 6 metal-poor ([Fe/H]<-1.0) clusters and 3 metal-rich ([Fe/H]>-1.0) clusters. Observations were carried out using IRSF 1.4m telescope and SIRIUS near-infrared camera, during 2006~2007. The obtained images have a total maximum field-of-view of ~ $21'\times 21'$. To select clusters' member stars and minimize the field star contaminations, we applied CMD masking algorithm. Smoothed surface density contour maps with selected stars for each cluster show overdensity features around the tidal radius and beyond. Also, radial surface density profiles within the tidal radius of the clusters show an overdensity feature as a change of slope of the radial profile. The results add further observational constraints of the formation of the Galactic bulge.

  • PDF

ICA-factorial 표현법을 이용한 얼굴감정인식 (Facial Expression Recognition using ICA-Factorial Representation Method)

  • 한수정;곽근창;고현주;김승석;전명근
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.371-376
    • /
    • 2003
  • 본 논문에서는 효과적인 정보를 표현하는 Independent Component Analysis(ICA)-factorial 표현방법을 이용하여 얼굴감정 인식을 수행한다. 얼굴감정인식은 두 단계인 특징추출 과정과 인식과정에 의해 이루어진다. 먼저 특징추출방법은 주성분 분석(Principal Component Analysis)을 이용하여 얼굴영상의 고차원 공간을 저차원 특징공간으로 변환한 후 ICA-factorial 표현방법을 통해 좀 더 효과적으로 특징벡터를 추출한다. 인식단계는 최소거리 분류방법인 유클리디안 거리에 근거한 K-Nearest Neighbor 알고리즘으로 얼굴감정을 인식한다. 6개의 기본감정(기쁨, 슬픔, 화남, 놀람, 공포, 혐오)에 대해 얼굴 감정 데이터베이스를 구축하고 실험해본 결과 기존의 방법보다 좋은 인식 성능을 얻었다.

칼라특징공간별 SLIC기반 슈퍼픽셀의 특성비교 (A Comparison of Superpixel Characteristics based on SLIC(Simple Linear Iterative Clustering) for Color Feature Spaces)

  • 이정환
    • 디지털산업정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.151-160
    • /
    • 2014
  • In this paper, a comparison of superpixel characteristics based on SLIC(simple linear iterative clustering) for several color feature spaces is presented. Computer vision applications have come to rely increasingly on superpixels in recent years. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. A superpixel is consist of pixels with similar features such as luminance, color, textures etc. Thus superpixels are more efficient than pixels in case of large scale image processing. Generally superpixel characteristics are described by uniformity, boundary precision and recall, compactness. However previous methods only generate superpixels a special color space but lack researches on superpixel characteristics. Therefore we present superpixel characteristics based on SLIC as known popular. In this paper, Lab, Luv, LCH, HSV, YIQ and RGB color feature spaces are used. Uniformity, compactness, boundary precision and recall are measured for comparing characteristics of superpixel. For computer simulation, Berkeley image database(BSD300) is used and Lab color space is superior to the others by the experimental results.

웨이브렛 변환과 신경회로망을 이용한 SMD IC 패턴인식 (Pattern recognition of SMD IC using wavelet transform and neural network)

  • 이명길;이준신
    • 전자공학회논문지S
    • /
    • 제34S권7호
    • /
    • pp.102-111
    • /
    • 1997
  • In this paper, a patern recognition method of surface mount device(SMD) IC using wavelet transform and neural network is proposed. We chose the feature parameter according to the characteristics of coefficient matrix which is obtained from four level discrete wavelet transform (DWT). These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Experimental results show that when the same form of feature pattern, as is used for learning, is put into neural network and gained 100% rate ofrecognition irrespective of SMD IC kinds, location and variation of illumination. In the case of unused feature pattern for learning, the recognition rate is 85.9% under the similar surroundings, where as an average recognition rate is 96.87% for the case of reregulated value of illumination. Proosed method is relatively simple compared with the traditional space domain method in extracting the feature parameter and is also well suited for recognizing the pattern's class, position and existence. It can also shorten the processing tiem better than method extracting feature parameter with the use of discrete cosine transform(DCT) and adapt the surroundings such as variation of illumination, the arrangement and the translation of SMD IC.

  • PDF

잡음에 강인한 특징점 정합 기법 (Feature Matching Algorithm Robust To Noise)

  • 정현조;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 하계학술대회
    • /
    • pp.9-12
    • /
    • 2015
  • 본 논문에서는 FAST(Features from Accelerated Segment Test) 특징점 검출기와 SURF 특징점 표현자(descriptor)를 수정하고 조합하여 영상의 왜곡에 강인하면서 정합을 수행할 수 있는 새로운 특징점 정합 기법을 제안한다. 스케일 공간을 생성하여 스케일 변화를 고려하고 잡음에 강인하기 위해 영상에서 특징점 후보군을 결정한다. 기존의 FAST는 에지 부분에서 특징점을 많이 검출하게 되는데 이러한 단점을 주곡률(principal curvatures)을 적용하여 개선하고자 한다. 또한 영상의 회전 변화에 강인하기 위해 SURF 특징점 표현자를 사용한다. 제안하는 정합 기법은 적은 계산량으로 기존의 특징점 정합 기법보다 우수한 성능을 나타낸다. 특별히 잡음이 존재하는 영상에서의 정합에 강인함을 보여준다.

  • PDF

실시간 얼굴인식을 위한 빠른 Gabor 특징 추출 (Fast Gabor Feature Extraction for Real Time Face Recognition)

  • 조경식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.597-600
    • /
    • 2007
  • 얼굴은 개인의 신원확인을 위하여 중요한 생체부분이다. 하지만 얼굴인식은 고차원적인 패턴인식의 문제이다. 저해상도 얼굴영상 조차도 대단히 큰 특징공간을 생성한다. 고유공간기반 얼굴인식은 고차원적인 패턴인식의 문제를 보다 낮은 차원으로 줄여서 얼굴인식을 하는 방법이다. 본 연구의 목적은 실시간 얼굴인식을 위하여 빠른 특징 추출방법을 제공하는 것이다. 먼저, 입력된 얼굴 영상에서 주성분분석을 수행하여 고유벡터와 고유값을 생성하고, 생성된 고유벡터의 특이점에 Gabor 필터를 적용하여 특징벡터를 구성한 후에 앞에서 구해진 고유값을 곱하여 특징을 추출하는 방법을 제안한다. 본 연구에서는 ORL 데이터베이스를 이용하여 실험하였다.

  • PDF

Feature Selection to Mine Joint Features from High-dimension Space for Android Malware Detection

  • Xu, Yanping;Wu, Chunhua;Zheng, Kangfeng;Niu, Xinxin;Lu, Tianling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4658-4679
    • /
    • 2017
  • Android is now the most popular smartphone platform and remains rapid growth. There are huge number of sensitive privacy information stored in Android devices. Kinds of methods have been proposed to detect Android malicious applications and protect the privacy information. In this work, we focus on extracting the fine-grained features to maximize the information of Android malware detection, and selecting the least joint features to minimize the number of features. Firstly, permissions and APIs, not only from Android permissions and SDK APIs but also from the developer-defined permissions and third-party library APIs, are extracted as features from the decompiled source codes. Secondly, feature selection methods, including information gain (IG), regularization and particle swarm optimization (PSO) algorithms, are used to analyze and utilize the correlation between the features to eliminate the redundant data, reduce the feature dimension and mine the useful joint features. Furthermore, regularization and PSO are integrated to create a new joint feature mining method. Experiment results show that the joint feature mining method can utilize the advantages of regularization and PSO, and ensure good performance and efficiency for Android malware detection.