• Title/Summary/Keyword: Feature modeling

Search Result 639, Processing Time 0.024 seconds

The Effects of Clothing Consumption Value and Demographic Features on Clothing Disposal Behaviors (의복소비가치와 인구통계적 특성에 따른 의복처분행동)

  • Ahn, Soo-kyoung;Ryou, Eunjeong
    • The Korean Fashion and Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.956-964
    • /
    • 2015
  • This study aims to investigate the relationship between consumers’ clothing consumption values, demographic features, and clothing disposal behaviors. The data were collected from 300 women aged between 20 and 59 through the online survey with the self-administered questionnaire. A series of exploratory and confirmative factor analysis was conducted to identify the dimensions of clothing consumption values and clothing disposition behaviors. Clothing consumption values consisted of six dimensions including conditional value, individuality value, fashion value, social value, practical value, and self-expression value. Clothing disposition behaviors were discovered as four dimensions such as discarding, giving, selling, and donating. A structural equation modeling analysis was employed to examine the relationship between clothing consumption values and disposition behaviors. While individuality value, fashion value, and practical value had a significantly positive impact on donating, giving, and discarding behaviors, both practical value and self-expression value negatively influenced discarding behavior. Fashion value negatively affected giving behavior. Employing a series of MANOVA, one-way ANOVA and sheffe's multiple range test, this study found that there were significant effects of age, marital status, monthly income, and monthly clothing expenses on giving and donating behaviors. This study suggests that fashion firms should be aware of clothing disposition in terms of social and environmental concerns and understand diverse consumer disposal behaviors and utilize them as a social marketing strategy.

Implementation of Embedded Speech Recognition System for Supporting Voice Commander to Control an Audio and a Video on Telematics Terminals (텔레메틱스 단말기 내의 오디오/비디오 명령처리를 위한 임베디드용 음성인식 시스템의 구현)

  • Kwon, Oh-Il;Lee, Heung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.93-100
    • /
    • 2005
  • In this paper, we implement the embedded speech recognition system to support various application services such as audio and video control using speech recognition interface on cars. The embedded speech recognition system is implemented and ported in a DSP board. Because MIC type and speech codecs affect the accuracy of speech recognition. And also, we optimize the simulation and test environment to effectively remove the real noises on a car. We applied a noise suppression and feature compensation algorithm to increase an accuracy of sppech recognition on a car. And we used a context dependent tied-mixture acoustic modeling. The performance evaluation showed high accuracy of proposed system in office environment and even real car environment.

Optimal Design of Local Induction Heating Coils Based on the Sampling-Based Sensitivity (샘플링 기반 민감도를 이용한 국부 유도 가열용 코일의 최적 설계)

  • Choi, Nak-Sun;Kim, Dong-Wook;Kim, Dong-Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • This paper proposes a sampling-based sensitivity method for dealing with electromagnetic coupled design problems effectively. The black-box modeling technique is basically applied to obtain an optimum regardless of how strong the electromagnetic, thermal and structural analyses are coupled with each other. To achieve this, Kriging surrogate models are produced in a hyper-cubic local window with the center of a current design point. Then design sensitivity values are extracted from the differentiation of basis functions which consist of the models. The proposed method falls under a hybrid optimization method which takes advantages of the sampling-based and the sensitivity-based methods. Owing to the aforementioned feature, the method can be applied even to electromagnetic problems of which the material properties are strongly coupled with thermal or structural outputs. To examine the accuracy and validity of the proposed method, a strongly nonlinear mathematical example and a coil design problem for local induction heating are tested.

An Ultra-precision Lathe for Large-area Micro-structured Roll Molds (대면적 미세패턴 롤 금형 가공용 초정밀 롤 선반 개발)

  • Oh, Jeong Seok;Song, Chang Kyu;Hwang, Jooho;Shim, Jong Youp;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1303-1312
    • /
    • 2013
  • We report an ultra-precision lathe designed to machine micron-scale features on a large-area roll mold. The lathe can machine rolls up to 600 mm in diameter and 2,500 mm in length. All axes use hydrostatic oil bearings to exploit the high-precision, stiffness, and damping characteristics. The headstock spindle and rotary tooling table are driven by frameless direct drive motors, while coreless linear motors are used for the two linear axes. Finite element method modeling reveals that the effects of structural deformation on the machining accuracy are less than $1{\mu}m$. The results of thermal testing show that the maximum temperature rise at the spindle outer surface is approximately $0.5^{\circ}C$. Finally, performance evaluations of the error motion, micro-positioning capability, and fine-pitch machining demonstrate that the lathe is capable of producing optical-quality surfaces with micron-scale patterns with feature sizes as small as $20{\mu}m$ on a large-area roll mold.

Wire Rope Fault Detection using Probability Density Estimation (확률분포추정기법을 이용한 와이어로프의 결함진단)

  • Jang, Hyeon-Seok;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1758-1764
    • /
    • 2012
  • A large number of wire rope has been used in various inderstiries as Cranes and Elevators from expanding the scale of the industrial market. But now, the management of wire rope is used as manually operated by rope replacement from over time or after the accident.It is caused to major accidents as well as economic losses and personal injury. Therefore its time to need periodic fault diagnosis of wire rope or supply of real-time monitoring system. Currently, there are several methods has been reported for fault diagnosis method of the wire rope, to find out the feature point from extracting method is becoming more common compared to time wave and model-based system. This method has implemented a deterministic modeling like the observer and neural network through considering the state of the system as a deterministic signal. However, the out-put of real system has probability characteristics, and if it is used as a current method on this system, the performance will be decreased at the real time. And if the random noise is occurred from unstable measure/experiment environment in wire rope system, diagnostic criterion becomes unclear and accuracy of diagnosis becomes blurred. Thus, more sophisticated techniques are required rather than deterministic fault diagnosis algorithm. In this paper, we developed the fault diagnosis of the wire rope using probability density estimation techniques algorithm. At first, The steady-state wire rope fault signal detection is defined as the probability model through probability distribution estimate. Wire rope defects signal is detected by a hall sensor in real-time, it is estimated by proposed probability estimation algorithm. we judge whether wire rope has defection or not using the error value from comparing two probability distribution.

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

Hypergraph model based Scene Image Classification Method (하이퍼그래프 모델 기반의 장면 이미지 분류 기법)

  • Choi, Sun-Wook;Lee, Chong Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.166-172
    • /
    • 2014
  • Image classification is an important problem in computer vision. However, it is a very challenging problem due to the variability, ambiguity and scale change that exists in images. In this paper, we propose a method of a hypergraph based modeling can consider the higher-order relationships of semantic attributes of a scene image and apply it to a scene image classification. In order to generate the hypergraph optimized for specific scene category, we propose a novel search method based on a probabilistic subspace method and also propose a method to aggregate the expression values of the member semantic attributes that belongs to the searched subsets based on a linear transformation method via likelihood based estimation. To verify the superiority of the proposed method, we showed that the discrimination power of the feature vector generated by the proposed method is better than existing methods through experiments. And also, in a scene classification experiment, the proposed method shows a competitive classification performance compared with the conventional methods.

A Performance Comparison of Multi-Label Classification Methods for Protein Subcellular Localization Prediction (단백질의 세포내 위치 예측을 위한 다중레이블 분류 방법의 성능 비교)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.992-999
    • /
    • 2014
  • This paper presents an extensive experimental comparison of a variety of multi-label learning methods for the accurate prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular locations. We compared several methods from three categories of multi-label classification algorithms: algorithm adaptation, problem transformation, and meta learning. Experimental results are analyzed using 12 multi-label evaluation measures to assess the behavior of the methods from a variety of view-points. We also use a new summarization measure to find the best performing method. Experimental results show that the best performing methods are power-set method pruning a infrequently occurring subsets of labels and classifier chains modeling relevant labels with an additional feature. futhermore, ensembles of many classifiers of these methods enhance the performance further. The recommendation from this study is that the correlation of subcellular locations is an effective clue for classification, this is because the subcellular locations of proteins performing certain biological function are not independent but correlated.

3D Wave Propagation Loss Modeling in Mobile Communication using MLP's Function Approximation Capability (MLP의 함수근사화 능력을 이용한 이동통신 3차원 전파 손실 모델링)

  • Yang, Seo-Min;Lee, Hyeok-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1143-1155
    • /
    • 1999
  • 셀룰러 방식의 이동통신 시스템에서 전파의 유효신호 도달범위를 예측하기 위해서는 전파전파 모델을 이용한 예측기법이 주로 사용된다. 그러나, 전파과정에서 주변 지형지물에 의해 발생하는 전파손실은 매우 복잡한 비선형적인 특성을 가지며 수식으로는 정확한 표현이 불가능하다. 본 논문에서는 신경회로망의 함수 근사화 능력을 이용하여 전파손실 예측모델을 생성하는 방법을 제안한다. 즉, 전파손실을 송수신 안테나간의 거리, 송신안테나의 특성, 장애물 투과영향, 회절특성, 도로, 수면에 의한 영향 등과 같은 전파환경 변수들의 함수로 가정하고, 신경회로망 학습을 통하여 함수를 근사화한다. 전파환경 변수들이 신경회로망 입력으로 사용되기 위해서는 3차원 지형도와 벡터지도를 이용하여 전파의 반사, 회절, 산란 등의 물리적인 특성이 고려된 특징 추출을 통해 정량적인 수치들을 계산한다. 이와 같이 얻어진 훈련데이타를 이용한 신경회로망 학습을 통해 전파손실 모델을 완성한다. 이 모델을 이용하여 서울 도심 지역의 실제 서비스 환경에 대한 타 모델과의 비교실험결과를 통해 제안하는 모델의 우수성을 보인다.Abstract In cellular mobile communication systems, wave propagation models are used in most cases to predict cell coverage. The amount of propagation loss induced by the obstacles in the propagation path, however, is a highly non-linear function, which cannot be easily represented mathematically. In this paper, we introduce the method of producing propagation loss prediction models by function approximation using neural networks. In this method, we assume the propagation loss is a function of the relevant parameters such as the distance from the base station antenna, the specification of the transmitter antenna, obstacle profile, diffraction effect, road, and water effect. The values of these parameters are produced from the field measurement data, 3D digital terrain maps, and vector maps as its inputs by a feature extraction process, which takes into account the physical characteristics of electromagnetic waves such as reflection, diffraction and scattering. The values produced are used as the input to the neural network, which are then trained to become the propagation loss prediction model. In the experimental study, we obtain a considerable amount of improvement over COST-231 model in the prediction accuracy using this model.

Automatic Generation of Machining Sequence for Machined Parts Using Machining Features (특징형상을 이용한 절삭가공부품의 가공순서 자동생성)

  • Woo, Yoonhwan;Kang, Sangwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.642-648
    • /
    • 2016
  • As 3D solid modeling prevails, a range of applications have become possible and intensive research on the integration of CAD/CAM has been conducted. As a consequence, methods to recognize the machining features from CAD models have been developed. On the other hand, generating a machining sequence using the machining features is still a problem due to a combinatorial problem with a large number of machining features. This paper proposes a new method that utilizes the precedence constraints through which the number of the combinations is reduced drastically. This method can automatically generate machining sequences requiring the lowest amount of machining time. An airplane part was used to test the usefulness of the proposed method.