Journal of the Korean Institute of Intelligent Systems
/
v.20
no.6
/
pp.786-792
/
2010
This paper presents a real-time lane detection method which can accurately find the lane-mark boundaries in complex road environment. Unlike many existing methods that pay much attention on the post-processing stage to fit lane-mark position among a great deal of outliers, the proposed method aims at removing those outliers as much as possible at feature extraction stage, so that the searching space at post-processing stage can be greatly reduced. To achieve this goal, a grid-based morphology operation is firstly used to generate the regions of interest (ROI) dynamically, in which a directional edge-linking algorithm with directional edge-gap closing is proposed to link edge-pixels into edge-links which lie in the valid directions, these directional edge-links are then grouped into pairs by checking the valid lane-mark width at certain height of the image. Finally, lane-mark colors are checked inside edge-link pairs in the YUV color space, and lane-mark types are estimated employing a Bayesian probability model. Experimental results show that the proposed method is effective in identifying lane-mark edges among heavy clutter edges in complex road environment, and the whole algorithm can achieve an accuracy rate around 92% at an average speed of 10ms/frame at the image size of $320{\times}240$.
As the Internet developed, various and complex cyber attacks began to emerge. Various detection systems were used outside the network to defend against attacks, but systems and studies to detect attackers inside were remarkably rare, causing great problems because they could not detect attackers inside. To solve this problem, studies on the lateral movement detection system that tracks and detects the attacker's movements have begun to emerge. Especially, the method of using the Remote Desktop Protocol (RDP) is simple but shows very good results. Nevertheless, previous studies did not consider the effects and relationships of each logon host itself, and the features presented also provided very low results in some models. There was also a problem that the model could not explain why it predicts that way, which resulted in reliability and robustness problems of the model. To address this problem, this study proposes an interpretable RDP-based lateral movement detection system using page rank algorithm and SHAP(Shapley Additive Explanations). Using page rank algorithms and various statistical techniques, we create features that can be used in various models and we provide explanations for model prediction using SHAP. In this study, we generated features that show higher performance in most models than previous studies and explained them using SHAP.
An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.43-45
/
2021
The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.
As multimedia information recently increases fast, various types of retrieval of multimedia data are becoming issues of great importance. For the efficient multimedia data processing, semantics based retrieval techniques are required that can extract the meaning contents of multimedia data. Existing retrieval methods of multimedia data are annotation-based retrieval, feature-based retrieval and annotation and feature integration based retrieval. These systems take annotator a lot of efforts and time and we should perform complicated calculation for feature extraction. In addition. created data have shortcomings that we should go through static search that do not change. Also, user-friendly and semantic searching techniques are not supported. This paper proposes to develop S-MARS(Semantic Metadata-based Multimedia Annotation and Retrieval System) which can represent and extract multimedia data efficiently using MPEG-7. The system provides a graphical user interface for annotating, searching, and browsing multimedia data. It is implemented on the basis of the semantic metadata model to represent multimedia information. The semantic metadata about multimedia data is organized on the basis of multimedia description schema using XML schema that basically comply with the MPEG-7 standard. In conclusion. the proposed scheme can be easily implemented on any multimedia platforms supporting XML technology. It can be utilized to enable efficient semantic metadata sharing between systems, and it will contribute to improving the retrieval correctness and the user's satisfaction on embedding based multimedia retrieval algorithm method.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.3
s.309
/
pp.30-38
/
2006
In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.
Multi-modality image registration is a widely used image processing technique to obtain composite information from two different kinds of image sources. This study proposes an image registration method based on moment information and surface distance, which improves the previous surface-based registration method. The proposed method ensures stable registration results with low registration error without being subject to the initial position and direction of the object. In the preprocessing step, the surface points of the object are extracted, and then moment information is computed based on the surface points. Moment information is matched prior to fine registration based on the surface distance, in order to ensure stable registration results even when the initial positions and directions of the objects are very different. Moreover, surface comer sampling algorithm has been used in extracting representative surface points of the image to overcome the limits of the existed random sampling or systematic sampling methods. The proposed method has been applied to brain MRI(Magnetic Resonance Imaging) and PET(Positron Emission Tomography), and its accuracy and stability were verified through registration error ratio and visual inspection of the 2D/3D registration result images.
This study developed a software platform using machine learning of artificial intelligence to optimize the distillation column system. The distillation column is representative and core process in the petrochemical industry. Process stabilization is difficult due to various operating conditions and continuous process characteristics, and differences in process efficiency occur depending on operator skill. The process control based on the theoretical simulation was used to overcome this problem, but it has a limitation which it can't apply to complex processes and real-time systems. This study aims to develop an empirical simulation model based on machine learning and to suggest an optimal process operation method. The development of empirical simulations involves collecting big data from the actual process, feature extraction through data mining, and representative algorithm for the chemical process. Finally, the platform for the distillation column was developed with verification through a developed model and field tests. Through the developed platform, it is possible to predict the operating parameters and provided optimal operating conditions to achieve efficient process control. This study is the basic study applying the artificial intelligence machine learning technique for the chemical process. After application on a wide variety of processes and it can be utilized to the cornerstone of the smart factory of the industry 4.0.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.48
no.2
/
pp.64-70
/
2011
Portable artificial electronic nose (E-nose) system suffers from noisy fluctuation in surroundings such as temperature, vapor concentration, and gas flow, because its measuring condition is not controled precisely as in the laboratory. It is important to develop a simple and robust vapor recognition technique applicable to this uncontrolled measurement, especially for the portable measuring and diagnostic system which are expanding its area with the improvements in micro bio sensor technology. This study used a PDA-based portable E-nose to collect the uncontrolled vapor measurement signals, and applied the image matching algorithm developed in the previous study on the measured signal to verify its robustness and improved accuracy in portable vapor recognition. The results showed not only its consistent performance under noisy fluctuation in the portable measurement signal, but also an advanced recognition accuracy for 2 similar vapor species which have been hard to discriminate with the conventional maximum sensitivity feature extraction method. The proposed method can be easily applied to the data processing of the ubiquitous sensor network (USN) which are usually exposed to various operating conditions. Furthermore, it will greatly help to realize portable medical diagnostic and environment monitoring system with its robust performance and high accuracy.
Journal of the Korea Society of Computer and Information
/
v.16
no.2
/
pp.25-31
/
2011
Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction. Although PCA has been applied in many areas successfully, it is sensitive to outliers due to the use of sum-square-error. Several variants of PCA have been proposed to resolve the noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA2, however, still can fall into a local optimum due to equal initial membership values for all data points. Another reason comes from the fact that RF-PCA2 is based on sum-square-error although fuzzy memberships are incorporated. In this paper, a variant of RF-PCA2 called RF-PCA3 is proposed. The proposed algorithm is based on the objective function of RF-PCA2. RF-PCA3 augments RF-PCA2 with the objective function of PCA and initial membership calculation using data distribution, which make RF-PCA3 to have more chance to converge on a better solution than that of RF-PCA2. RF-PCA3 outperforms RF-PCA2, which is demonstrated by experimental results.
Journal of the Korean Institute of Intelligent Systems
/
v.26
no.6
/
pp.433-438
/
2016
This paper proposes a grade prediction method to measure meat quality in Hanwoo (Korean Native Cattle) using classification and feature extraction algorithms. The applied classification algorithm is an AdaBoost and the texture features of the given ultrasound images are extracted using SFTA. In this paper, as an initial phase, we selected ultrasound images of Hanwoo for verifying experimental results; however, we ultimately aimed to develop a diagnostic decision support system for human body scan using ultrasound images. The advantages of using ultrasound images of Hanwoo are: accurate grade prediction without butchery, optimizing shipping and feeding schedule and economic benefits. Researches on grade prediction using biometric data such as ultrasound images have been studied in countries like USA, Japan, and Korea. Studies have been based on accurate prediction method of different images obtained from different machines. However, the prediction accuracy is low. Therefore, we proposed a prediction method of meat quality. From the experimental results compared with that of the real grades, the experimental results demonstrated that the proposed method is superior to the other methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.