• 제목/요약/키워드: Feature Vector

검색결과 1,574건 처리시간 0.029초

신경망을 이용한 저비트율 영상코딩 (Low Sit Rate Image Coding using Neural Network)

  • 정연길;최승규;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.579-582
    • /
    • 2001
  • 벡터변형은 벡터 양자화(VQ)와 부호화를 통합한 새로운 방법이다. 최근까지 부호화에 적용된 코드북 생성은 LBG 알고리즘이었으나 신경회로망을 기반으로 한 자기생성 특성맵(SOFM: Self Organizing Feature Map)의 장점을 이용하면 시스템의 성능을 개선할 수 있다는 점에 착안하였다. 본 논문에서는 SOFM 알고리즘을 적용한 VTC(Vector Transformation coding)코드북 생성과 LBG 알고리즘의 부호화률에 대한 결과를 비교하여 분석하였다. 벡터 양자화의 문제점은 계산의 복잡성과 코드북 생성에 있으므로 본 연구에서는 이 문제의 해결을 위해 신경망 접근법을 제안한다.

  • PDF

영상특징을 이용한 로봇의 시각적 구동 방법 (Visual Servoing of an Eye-In-Hand Robot Based on Features)

  • 장원;정명진;변증남
    • 대한전자공학회논문지
    • /
    • 제27권11호
    • /
    • pp.32-41
    • /
    • 1990
  • 본 논문에서는 시각정보에 의하여 로봇을 제어하기위해 영상으로부터 추출되는 feature를 이용하는 한 방법을 제안한다. 특별히 feature에 대한 수학적인 정의를 제안하였으며 로봇의 움직임과 feature vector의 미소한 변화 사이의 관계를 기술하였다. 이 과정에서 feature jacobian matrix와 그의 gene-ralized inverse가 사용되었다. 로봇 자유도의 수보다 많은 feature를 사용하면 visual servoing의 성능을 향상시킬 수 있었다. 여러 예를 통하여, 본 논문에서 제안된 방법이 유효함을 보였다.

  • PDF

자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬 (Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization)

  • 양보석;서상윤;임동수;이수종
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

감정 인식을 위한 음성의 특징 파라메터 비교 (The Comparison of Speech Feature Parameters for Emotion Recognition)

  • 김원구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.470-473
    • /
    • 2004
  • In this paper, the comparison of speech feature parameters for emotion recognition is studied for emotion recognition using speech signal. For this purpose, a corpus of emotional speech data recorded and classified according to the emotion using the subjective evaluation were used to make statical feature vectors such as average, standard deviation and maximum value of pitch and energy. MFCC parameters and their derivatives with or without cepstral mean subfraction are also used to evaluate the performance of the conventional pattern matching algorithms. Pitch and energy Parameters were used as a Prosodic information and MFCC Parameters were used as phonetic information. In this paper, In the Experiments, the vector quantization based emotion recognition system is used for speaker and context independent emotion recognition. Experimental results showed that vector quantization based emotion recognizer using MFCC parameters showed better performance than that using the Pitch and energy parameters. The vector quantization based emotion recognizer achieved recognition rates of 73.3% for the speaker and context independent classification.

  • PDF

Chaotic Features for Dynamic Textures Recognition with Group Sparsity Representation

  • Luo, Xinbin;Fu, Shan;Wang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4556-4572
    • /
    • 2015
  • Dynamic texture (DT) recognition is a challenging problem in numerous applications. In this study, we propose a new algorithm for DT recognition based on group sparsity structure in conjunction with chaotic feature vector. Bag-of-words model is used to represent each video as a histogram of the chaotic feature vector, which is proposed to capture self-similarity property of the pixel intensity series. The recognition problem is then cast to a group sparsity model, which can be efficiently optimized through alternating direction method of multiplier algorithm. Experimental results show that the proposed method exhibited the best performance among several well-known DT modeling techniques.

Shape-based Image Retrieval using VQ based Local Differential Invariants

  • Kim , Hyun-Sool;Shin, Dae-Kyu;Chung , Tae-Yun;Park , Sang-Hui
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.7-11
    • /
    • 2002
  • In this study, fur the shape-based image retrieval, a method using local differential invariants is proposed. This method calculates the differential invariant feature vector at every feature point extracted by Harris comer point detector. Then through vector quantization using LBG algorithm, all feature vectors are represented by a codebook index. All images are indexed by the histogram of codebook index, and by comparing the histograms the similarity between images is obtained. The proposed method is compared with the existing method by performing experiments for image database including various 1100 trademarks.

  • PDF

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

경계 영역 특성과 적응적 블록 정합을 이용한 시간적 오류 은닉 (Temporal Error Concealment Using Boundary Region Feature and Adaptive Block Matching)

  • 배태욱;김승진;김태수;이건일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we proposed an temporal error concealment (EC) using the proposed boundary matching method and the adaptive block matching method. The proposed boundary matching method improves the spatial correlation of the macroblocks (MBs) by reusing the pixels of the concealed MB to estimate a motion vector of a error MB. The adaptive block matching method inspects the horizontal edge and the vertical edge feature of a error MB surroundings, and it conceals the error MBs in reference to more stronger edge feature. This improves video quality by raising edge connection feature of the error MBs and the neighborhood MBs. In particular, we restore a lost MB as the unit of 8${\times}$16 block or 16${\times}$8 block by using edge feature from the surrounding macroblocks. Experimental results show that the proposed algorithm gives better results than the conventional algorithms from a subjective and an objective viewpoint.

  • PDF

음성신호기반의 감정분석을 위한 특징벡터 선택 (Discriminative Feature Vector Selection for Emotion Classification Based on Speech)

  • 최하나;변성우;이석필
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1363-1368
    • /
    • 2015
  • Recently, computer form were smaller than before because of computing technique's development and many wearable device are formed. So, computer's cognition of human emotion has importantly considered, thus researches on analyzing the state of emotion are increasing. Human voice includes many information of human emotion. This paper proposes a discriminative feature vector selection for emotion classification based on speech. For this, we extract some feature vectors like Pitch, MFCC, LPC, LPCC from voice signals are divided into four emotion parts on happy, normal, sad, angry and compare a separability of the extracted feature vectors using Bhattacharyya distance. So more effective feature vectors are recommended for emotion classification.

힐버트-후앙 변환을 이용한 수중소음원의 식별 (Identification of Underwater Ambient Noise Sources Using Hilbert-Huang Transfer)

  • 황도진;김재수
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.30-36
    • /
    • 2008
  • Underwater ambient noise originating from geophysical, biological, and man-made acoustic sources contains information on the source and the ocean environment. Such noise affectsthe performance of sonar equipment. In this paper, three steps are used to identify the ambient noise source, detection, feature extraction, and similarity measurement. First, we use the zero-crossing rate to detect the ambient noisesource from background noise. Then, a set of feature vectors is proposed forthe ambient noise source using the Hilbert-Huang transform and the Karhunen-Loeve transform. Finally, the Euclidean distance is used to measure the similarity between the standard feature vector and the feature vector of the unknown ambient noise source. The developed algorithm is applied to the observed ocean data, and the results are presented and discussed.