• Title/Summary/Keyword: Feature Based Modeling System

Search Result 163, Processing Time 0.031 seconds

Specialized Product-Line Development Methodology for Developing the Embedded System

  • Hong Ki-Sam;Yoon Hee-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.268-273
    • /
    • 2005
  • We propose the specialized product-line development methodology for developing the embedded system of an MSDFS (Multi Sensor Data Fusion System : called MSDFS). The product-line methodology provides a simultaneous design between software and hardware, high level reusability. However this is insufficient in requirement analysis stage due to be focused on software architecture, detailed design and code. Thus we apply the business model based on IDEF0 technique to traditional methodology. In this paper, we describe the processes of developing Core-Asset, which are requirement analysis, feature modeling, validation. The proposed model gives the efficient result for eliciting features, and ensures the high level reusability of modules performing on embedded system.

New Fuzzy Inference System Using a Kernel-based Method

  • Kim, Jong-Cheol;Won, Sang-Chul;Suga, Yasuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2393-2398
    • /
    • 2003
  • In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition, the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed technique.

  • PDF

VIP/Sim : Design and Implementation of Virtual Prototyping Simulator based on Statecharts (VIP/Sim : Statecharts에 기반을 둔 가상 프로토타이핑 시뮬레이터 설계 및 구현)

  • Kim, Cheol-Ung;Han, Sang-Yong;Choe, Jin-Yeong;Lee, Jeong-A
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.891-900
    • /
    • 2000
  • A Visual development framework for embedded system is presented based on virtual prototyping. Embedded systems often are used in life critical situation, where reliability is very important. Time_to_market, correctness, user_friendly_design are another features required for embedded system design. However, embedded systems are today designed with an ad hoc approach that is heavily based on earlier experience with similar products. We believe that new design paradigm is needed and it should be based on the use of formal model and visual system to describe the behavior of the system at a high level abstraction. Virtual prototyping has all the required features. It has the following advantages; correct design, clear interface definition, idea experimentation, increased communication. In this paper, we describe the design and implementation of VIP/Sim(Virtual Prototyping Simulator), a visionary development framework for embedded system design. New feature such as state polymorphism is augmented to the de_facto standard formal language, statechart, for enhanced dynamic modeling. Actual design experience with VIP/Sim is also discussed.

  • PDF

Human head tracking system using the ellipse modeling (타원 모델링을 이용한 사람 머리 추적 시스템 구현)

  • 이명재;박동선;조재완;이용범
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.749-752
    • /
    • 1998
  • Recognizing a human part becomes very important for applications which are based on the interaction between computers and their users. In this paper, we design and implement a system which recognizes and tracks a human head using a sequence of images. Difference images are used to easily extract feature vectors from images with very complex backgrounds. A human bhead is represented with an ellipse and recognized by searching for a maximum value from preprocessed gradient images. The method is developed by considering the fact that the tracking system should be real-time. The designed system not only shows an excellent performance for the normal up-right position of the head, but also for the cases of 360.deg. rotated head position, occluded images of heads, and tilted head positions.

  • PDF

Implementation of an Effective Human Head Tracking System Using the Ellipse Modeling and Color Information (타원 모델링과 칼라정보를 이용한 효율적인 머리 추적 시스템 구현)

  • Park, Dong-Sun;Yoon, Sook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.684-691
    • /
    • 2001
  • In this paper, we design and implement a system which recognizes and tracks a human head on a sequence of images. In this paper, the color of the skin and ellipse modeling is used as feature vectors to recognize the human head. And the modified time-varying edge detection method and the vertical projection method is used to acquire regions of the motion from images with very complex backgrounds. To select the head from the acquired candidate regions, the process for thresholding on the basis of the I-component of YIQ color information and mapping with ellipse modeling is used. The designed system shows an excellent performance in the cases of the rotated heads, occluded heads, and tilted heads as well as in the case of the normal up-right heads. And in this paper, the combinational technique of motion-based tracking and recognition-based tracking is used to track the human head exactly even though the human head moves fast.

  • PDF

Contact interface fiber section element: shallow foundation modeling

  • Limkatanyu, Suchart;Kwon, Minho;Prachasaree, Woraphot;Chaiviriyawong, Passagorn
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-190
    • /
    • 2012
  • With recent growing interests in the Performance-Based Seismic Design and Assessment Methodology, more realistic modeling of a structural system is deemed essential in analyzing, designing, and evaluating both newly constructed and existing buildings under seismic events. Consequently, a shallow foundation element becomes an essential constituent in the implementation of this seismic design and assessment methodology. In this paper, a contact interface fiber section element is presented for use in modeling soil-shallow foundation systems. The assumption of a rigid footing on a Winkler-based soil rests simply on the Euler-Bernoulli's hypothesis on sectional kinematics. Fiber section discretization is employed to represent the contact interface sectional response. The hyperbolic function provides an adequate means of representing the stress-deformation behavior of each soil fiber. The element is simple but efficient in representing salient features of the soil-shallow foundation system (sliding, settling, and rocking). Two experimental results from centrifuge-scale and full-scale cyclic loading tests on shallow foundations are used to illustrate the model characteristics and verify the accuracy of the model. Based on this comprehensive model validation, it is observed that the model performs quite satisfactorily. It resembles reasonably well the experimental results in terms of moment, shear, settlement, and rotation demands. The hysteretic behavior of moment-rotation responses and the rotation-settlement feature are also captured well by the model.

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.

Spatial Pattern Analysis of High Resolution Satellite Imagery: Level Index Approach using Variogram

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.357-366
    • /
    • 2006
  • A traditional image analysis or classification method using satellite imagery is mostly based on the spectral information. However, the spatial information is more important according as the resolution is higher and spatial patterns are more complex. In this study, we attempted to compare and analyze the variogram properties of actual high resolution imageries mainly in the urban area. Through the several experiments, we have understood that the variogram is various according to a sensor type, spatial resolution, a location, a feature type, time, season and so on and shows the information related to a feature size. With simple modeling, we confirmed that the unique variogram types were shown unlike the classical variogram in case of small subsets. Based on the grasped variogram characteristics, we made a level index map for determining urban complexity or land-use classification. These results will become more and more important and be widely applied to the various fields of high-resolution imagery such as KOMPSAT-2 and KOMPSAT-3 which is scheduled to be launched.

Correction of Erroneous Model Key Points Extracted from Segmented Laser Scanner Data and Accuracy Evaluation

  • Yoo, Eun Jin;Park, So Young;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.611-623
    • /
    • 2013
  • Point cloud data (i.e., LiDAR; Light Detection and Ranging) collected by Airborne Laser Scanner (ALS) system is one of the major sources for surface reconstruction including DEM generation, topographic mapping and object modeling. Recently, demand and requirement of the accurate and realistic Digital Building Model (DBM) increase for geospatial platforms and spatial data infrastructure. The main issues in the object modeling such as building and city modeling are efficiency of the methodology and quality of the final products. Efficiency and quality are associated with automation and accuracy, respectively. However, these two factors are often opposite each other. This paper aims to introduce correction scheme of incorrectly determined Model Key Points (MKPs) regardless of the segmentation method. Planimetric and height locations of the MKPs were refined by surface patch fitting based on the Least-Squares Solution (LESS). The proposed methods were applied to the synthetic and real LiDAR data. Finally, the results were analyzed by comparing adjusted MKPs with the true building model data.

Realistic 3D Scene Reconstruction from an Image Sequence (연속적인 이미지를 이용한 3차원 장면의 사실적인 복원)

  • Jun, Hee-Sung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.183-188
    • /
    • 2010
  • A factorization-based 3D reconstruction system is realized to recover 3D scene from an image sequence. The image sequence is captured from uncalibrated perspective camera from several views. Many matched feature points over all images are obtained by feature tracking method. Then, these data are supplied to the 3D reconstruction module to obtain the projective reconstruction. Projective reconstruction is converted to Euclidean reconstruction by enforcing several metric constraints. After many triangular meshes are obtained, realistic reconstruction of 3D models are finished by texture mapping. The developed system is implemented in C++, and Qt library is used to implement the system user interface. OpenGL graphics library is used to realize the texture mapping routine and the model visualization program. Experimental results using synthetic and real image data are included to demonstrate the effectiveness of the developed system.