• 제목/요약/키워드: Feather waste

검색결과 22건 처리시간 0.029초

Study of the Production of Alkaline Keratinases in Submerged Cultures as an Alternative for Solid Waste Treatment Generated in Leather Technology

  • Cavello, Ivana A.;Chesini, Mariana;Hours, Roque A.;Cavalitto, Sebastian F.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.1004-1014
    • /
    • 2013
  • Six nonpathogenic fungal strains isolated from alkaline soils of Buenos Aires Province, Argentina (Acremonium murorum, Aspergillus sidowii, Cladosporium cladosporoides, Neurospora tetrasperma, Purpureocillium lilacinum (formerly Paecilomyces lilacinus), and Westerdikella dispersa) were tested for their ability to produce keratinolytic enzymes. Strains were grown on feather meal agar as well as in solid-state and submerged cultures, using a basal mineral medium and "hair waste" as sole sources of carbon and nitrogen. All the tested fungi grew on feather meal agar, but only three of them were capable of hydrolyzing keratin, producing clear zones. Among these strains, P. lilacinum produced the highest proteolytic and keratinolytic activities, both in solid-state and submerged fermentations. The medium composition and culture conditions for the keratinases production by P. lilacinum were optimized. Addition of glucose (5 g/l) and yeast extract (2.23 g/l) to the basal hair medium increased keratinases production. The optimum temperature and initial pH for the enzyme production were $28^{\circ}C$ and 6.0, respectively. A beneficial effect was observed when the original concentration of four metal ions, present in the basal mineral medium, was reduced up to 1:10. The maximum yield of the enzyme was 15.96 $U_c/ml$ in the optimal hair medium; this value was about 6.5-fold higher than the yield in the basal hair medium. These results suggest that keratinases from P. lilacinum can be useful for biotechnological purposes such as biodegradation (or bioconversion) of hair waste, leading to a reduction of the environmental pollution caused by leather technology with the concomitant production of proteolytic enzymes and protein hydrolyzates.

가금폐기물 처리를 위한 세균유래 케라틴 분해효소의 특성 (Characteristics of Bacteria-Originated Keratinase for Feather Waste Treatment)

  • 고태훈;이상미;조광식;이예람;박수연;장은영;정성윤;손홍주
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1095-1100
    • /
    • 2014
  • Keratin wastes are generated in excess of million tons per year worldwide and biodegradation of keratin by microorganisms possessing keratinase activity can be used as an alternative tool to prevent environmental pollution. For practical use of keratinase, its physicochemical properties should be investigated in detail. In this study, we investigated characteristics of keratinase produced by Xanthomonas sp. P5 which is isolated from rhizospheric soil of soybean. The level of keratinase produced by the strain P5 increased with time and reached its maximum (10.6 U/ml) at 3 days. The production of soluble protein had the same tendency as the production of keratinase. Optimal temperature and pH of keratinase were $40^{\circ}C-45^{\circ}C$ and pH 9, respectively. The enzyme showed broad temperature and pH stabilities. Thermostability profile showed that the enzyme retained 94.6%-100% of the original activity after 1 h treatment at $10^{\circ}C-40^{\circ}C$. After treatment for 1 h at pH 6-10, 89.2%-100% of the activity was remained. At pH 11, 71.6% of the original activity was retained after 1 h treatment. Although the strain P5 did not degrade human hair, it degraded duck feather and chicken feather. These results indicate that keratinase from Xanthomonas sp. P5 could be not only used to upgrade the nutritional value of feather hydrolysate but also useful in situ biodegradation of feather.

Isolation, Identification, and Characterization of a Keratin-degrading Bacterium Chryseobacterium sp. P1-3

  • Hong, Sung-Jun;Park, Gun-Seok;Jung, Byung Kwon;Khan, Abdur Rahim;Park, Yeong-Jun;Lee, Chang-Hyun;Shin, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.247-251
    • /
    • 2015
  • In this study, a keratin-degrading bacterium was isolated from soil contaminated with feather waste. The isolated strain was identified as Chryseobacterium sp. P1-3 on the basis of the 16S rRNA gene sequence alignment. Chryseobacterium sp. P1-3 is currently used in various biotechnological applications (e.g., in the hydrolysis of poultry feathers). It hydrolyzed the feather meal within 2 days and possesses a high level of keratinase activity (98 U/mL). The keratinase, partially purified from this strain, prefers casein as a substrate and shows optimal activity at a temperature of $30^{\circ}C$ and at a pH of 8.0.

Improving the brittle behaviour of high-strength concrete using keratin and glass fibres

  • Abdelsamie, Khaled;Agwa, Ibrahim Saad;Tayeh, Bassam A.;Hafez, Radwa Defalla Abdel
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.469-477
    • /
    • 2021
  • Keratin fibres are waste products of the poultry industry. Natural materials made from chicken feather fibres (CFFs) are used in concrete-reinforced composites in this study. Brittleness is a major problem of high-strength concrete (HSC) that leads to sudden failure at the ultimate capacity of concrete. Hence, this work aims to investigate effects of using CFFs on improving the brittle behaviour of HSC. Two scenarios are performed to analyse the effectiveness of using CFFs. HSC containing different ratios of CFF (0% as the control, 0.5%, 1%, 1.5%, 2%, and 3%) by volume are tested in the first scenario. Glass fibres (GF) are used to replace CFFs in the other scenario. Tests of fresh, hardened and morphological properties for concrete are performed. Results showed the enhanced brittle behaviour of HSC when using both types of fibres. The preferable ratio of both types of fibres is 1% by volume. Flexural and splitting tensile strengths increased by about 44.9 % and 42.65 % for mixes containing 0.1% GF, respectively. While they were increased by about 21.6 % and 21.16 % for mixes containing 0.1% CFF, respectively.

Synergistic Effect of Reductase and Keratinase for Facile Synthesis of Protein-Coated Gold Nanoparticles

  • Gupta, Sonali;Singh, Surinder P.;Singh, Rajni
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.612-619
    • /
    • 2015
  • We have synthesized gold nanoparticles (GNPs) using chicken feathers (poultry waste) and Bacillus subtilis RSE163. Disulfide reductase and keratinase produced by Bacillus subtilis during the degradation of chicken feather has been used to reduce Au3+ from HAuCl4 precursor to produce gold nanoparticles. The synthesized biogenic GNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), and zeta potential measurements. Fourier transform infrared (FTIR) spectroscopy indicated the presence of protein capping on synthesized GNPs, imparting multifunctionality to the GNP surface. Furthermore, the nontoxic nature of biogenic GNPs was insured by interaction with Escherichia coli (ATCC11103), where TEM images and enhancement of growth rate of E. coli in log phase signified their nontoxic nature. The results indicate that the synthesis of biocompatible GNPs using poultry waste may find potential applications in drug delivery and sensing.

Use of Tannery Wastes in the Diet of Broiler

  • Alam, M.J.;Amin, M.R.;Samad, M.A.;Islam, M.A.;Wadud, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1773-1775
    • /
    • 2002
  • Tannery waste contained 90.93% DM, 77.02% CP, 0.77% CF, 2.83% EE, 7.19% ash and 3,450 kcal ME/kg DM. A total of 144 day-old broiler chicks were divided into three dietary groups; $D_1$ (Containing 10% protein concentrate-PC), $D_2$ (Containing 5% PC+5% tannery waste-TW) and $D_3$ (Containing 10% TW) having 3 replicates of 16 chicks in each. The birds were fed broiler starter diet containing 22% CP, 3,000 kcal ME/kg and broiler finisher diet containing 21% CP, 3,100 kcal ME/kg up to 42 days of age, and meat yield traits were measured from the representative birds from each replication to asses the feasibility of using tannery waste in the diet of broiler. Feed intake, live weight, feed conversion efficiency and livability did not differ between diets (p>0.05) but the cost of production and profitability differed significantly (p<0.001). Profitability of D1, D2, and D3 diets were 2.98, 9.90 and 14.04 Taka/kg respectively. Diets did not affect on meat yield traits (p>0.05), except gizzard, shank and feather weight (p<0.01). Gizzard and shank weigh were improved with increasing level of tannery wastes in the diet, hence tannery waste can be used without any harmful effect in the broiler diet.

Metallo-collagenase production by Arthrobacter creatinolyticus KP015744

  • Savita A. Kate;Madhuri Sahasrabudhe;Archana Pethe
    • Advances in environmental research
    • /
    • 제11권1호
    • /
    • pp.1-16
    • /
    • 2022
  • Amongst 27 isolates from deteriorated leather samples, Arthrobacter creatinolyticus KP015744 zzx28 was found to be an efficient collagenase producer. Collagenase production of 13.33 µmoles/min was shown at an optimum temperature at 37℃ after 72h and at pH 7.5 by using 2 ml/dL inoculum in 10 mg/ml collagen peptide type I as a substrate. In presence of Hg2+, EDTA and 𝛽-mercaptoethanol the collagenase production by the isolate was strongly inhibited however Fe2+, Ca2+and DMSO enhanced production of the enzyme. Specific activity was found to be 19.46×103 U/mg and molecular weight 66 kD by SDS PAGE. Isolate also has potential to hydrolyze keratin which is another important protein found in leather. Experimental results propose that collagenase can be effectively used as a tool for collagen and keratin rich solid waste treatment.

Bacillus sp. SH-517에 의한 keratinase의 생성 최적 배양 조건 (Optimal Culture Conditions on the Keratinase Production by Bacillus sp. SH-517.)

  • 방병호;이문수;임기환;이동희
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.839-844
    • /
    • 2008
  • 경기도와 충청도 일대의 가금류 처리공장과 폐기물 처리장 부근 토양으로부터 protease 활성이 높은 균주를 분리한 후 그 중 keratinase 활성이 높은 1균주를 최종 선별하여 동정하고 효소생산을 위한 최적 배양조건을 검토한 결과는 다음과 같다. 선별된 균주는 형태학적, 생화학적 특성을 조사한 결과 Bacillus 속으로 판명되었으며, 편의상 Bacillus sp. SH-517로 명명하여 사용하였다. Bacillus sp. SH-517에 의한 keratinase 생성 최적 조건을 검토하였는데, 최적 배지 조성은 탄소원으로 chicken feather 2.0%, 유기질소원으로 beef extract 0.5%, 무기질원소원으로 $KNO_3$ 0.5%, 무기염으로 KCl 0.06%, NaCl 0.05%, $KH_2PO_4$ 0.04%. $K_2HPO_4$ 0.03%이었고 그리고 생육인자로 yeast extract 0.01%이였다. 진탕배양 시(180 rpm/min), 최적 온도와 배지의 pH는 각각 $40^{\circ}C$, 8.5로 나타났으며, 위와 같은 최적 조건 하에서 keratinase의 최대 활성은 42시간 만에 125 units/ml/min이었다.

Quality attributes and shelf-life of freshly cut beef coated with waste feather keratin-ginger starch composite enriched with avocado peel polyphenolic-rich extract

  • Olarewaju M Oluba;Samuel I Ojeaburu;Opeyemi A Bayo-Olorunmeke;Georgina Erifeta;Sunday J Josiah
    • 한국식품저장유통학회지
    • /
    • 제31권1호
    • /
    • pp.1-14
    • /
    • 2024
  • The utilization of coatings composed of bio-based materials in the processing and preservation of meat presents an environmentally conscious, secure, cost-effective, and superior method for prolonging the storage life of meat while also preserving its nutritional value. In this study, changes in physical, chemical, and microbiological characteristics of freshly cut beef coated with distilled water (control) and keratin-starch composites (K-S) functionalized with 0.0-, 0.2-, 0.6-, and 1.0-mL avocado peel polyphenolic-rich extract (APPPE) kept at 4℃ for 12 days were evaluated periodically at 3-day interval using standard techniques. Keratin was extracted from waste feathers, while starch was obtained from ginger rhizomes. Following a 12-day storage period, beef coated with APPPE-enriched K-S composites exhibited a significant (p<0.05) improvement in shelf life by minimizing deteriorative changes in pH and color (as determined by metmyoglobin level) in addition to inhibiting oxidative changes in lipids (as determined by TBARS level) and proteins (protein carbonyl level) in comparison to control and K-S composite without APPPE. Furthermore, microbial growth was significantly (p<0.05) suppressed in meat coated with K-S composite functionalized with APE at 0.6 and 1.0 mL compared to the control. The study suggested that APPPE-enriched K-S composite could offer an eco-friendly and safe food preservation technique for fresh meat.

식물 성장 촉진 활성을 가진 Bacillus amyloliquefaciens Y10에 의한 가금 우모의 분해 및 생산된 우모 분해산물의 생리활성 (Degradation of Poultry Feathers by Bacillus amyloliquefaciens Y10 With Plant Growth-promoting Activity and Biological Activity of Feather Hydrolyzates)

  • 김예담;이영석;김영석;송진명;박영빈;박규림;이오미;손홍주
    • 생명과학회지
    • /
    • 제34권5호
    • /
    • pp.304-312
    • /
    • 2024
  • 가금류 우모는 환경오염 물질이자 병원성 세균의 저장소로 간주되는 축산폐기물이다. 따라서 우모 폐기물을 관리하기 위한 지속 가능하고, 환경친화적인 방법을 개발하는 것은 매우 중요하다. 본 연구는 폐기된 닭의 우모로부터 분리된 Y10 균주를 동정하고, 특성화하기 위하여 수행되었다. Y10 균주는 표현형 및 16S rRNA 유전자 분석을 통해 Bacillus amyloliquefaciens에 속하는 것으로 확인되었다. B. amyloliquefaciens Y10은 곰팡이 세포성분을 분해하는 효소(cellulase, lipase, protease and pectinase), siderophore, 암모니아 및 IAA 생성과 같은 식물 성장 촉진 활성을 나타내었다. 나아가 Y10 균주는 일부 식물병원성 곰팡이의 균사체 생육을 억제할 수 있었다. 기본배지에 탄소원으로 sucrose 0.1%, 질소원으로 casein 0.05%를 첨가한 후, 배지의 pH를 10으로 조정하여 35℃에서 배양했을 때, 실험균주에 의한 우모 분해율은 기본배지 대비 약 2배 증가되었으며, 배양 4일에 우모는 완전히 분해되었다. 또한 실험균주는 개선된 조건에서 오리 우모, 양모, 사람의 손발톱과 같은 다양한 케라틴 기질을 분해할 수 있었다. Y3 균주를 이용하여 조제된 우모 분해산물은 DPPH 라디칼 소거능(EC50 = 0.38 mg/ml)과 SOD 유사활성(EC50 = 183.7 mg/ml)과 같은 항산화능이 있음을 확인하였다. 이 결과는 실험균주는 케라틴 폐기물의 미생물학적 처리뿐만 아니라 농축산 산업에 적용할 수 있는 생물 비료, 생물 농약 및 사료첨가제 개발의 잠재적인 후보가 될 수 있을 시사한다.