Browse > Article
http://dx.doi.org/10.4014/jmb.1411.11022

Synergistic Effect of Reductase and Keratinase for Facile Synthesis of Protein-Coated Gold Nanoparticles  

Gupta, Sonali (Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh)
Singh, Surinder P. (National Physical Laboratory, Dr. K.S. Krishnan Marg)
Singh, Rajni (Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.5, 2015 , pp. 612-619 More about this Journal
Abstract
We have synthesized gold nanoparticles (GNPs) using chicken feathers (poultry waste) and Bacillus subtilis RSE163. Disulfide reductase and keratinase produced by Bacillus subtilis during the degradation of chicken feather has been used to reduce Au3+ from HAuCl4 precursor to produce gold nanoparticles. The synthesized biogenic GNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), and zeta potential measurements. Fourier transform infrared (FTIR) spectroscopy indicated the presence of protein capping on synthesized GNPs, imparting multifunctionality to the GNP surface. Furthermore, the nontoxic nature of biogenic GNPs was insured by interaction with Escherichia coli (ATCC11103), where TEM images and enhancement of growth rate of E. coli in log phase signified their nontoxic nature. The results indicate that the synthesis of biocompatible GNPs using poultry waste may find potential applications in drug delivery and sensing.
Keywords
Reductase; keratinase; gold nanoparticles; UV-visible spectroscopy; bioreduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ghalamboran MR, Ramsden JJ, Ansari F. 2009. Growth rate enhancement of Bradyrhizobium japanicum due to magnetite nanoparticles. J. Bionanosci. 3: 33-38.   DOI
2 Akbarzadeh A, Davood Ze Ali F, Mohammad RM, Norouzian D, Tangestaninejad S, Moghadam M, Bararpour, N. 2009. Synthesis and characterization of gold nanoparticles by tryptophane. Am. J. Appl. Sci. 6: 691-695.   DOI
3 Ayers D, Nasti A. 2012. Utilisation of nanoparticle technology in cancer chemoresistance. J. Drug Deliv. DOI:10.1155/2012/265691.   DOI
4 Barath Mani Kanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn HS, Eom S, Gurunathan S. 2010. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J. Nanobiotechnol. 8: 16.   DOI   ScienceOn
5 Belarmino DD, Ladchumananandasivam R, Belarmino LD, Pimentel JRDM, da Rocha BG, Galvão AO, de Andrade SM. 2012. Physical and morphological structure of chicken feathers (keratin biofiber) in natural, chemically and thermally modified forms. Mater. Sci. Appl. 3: 887-893.
6 Cabiscol E, Tamarit J, Ros J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3: 3-8.
7 Chandran PR, Naseer M, Udupa N, Sandhyarani N. 2012. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH. Nanotechnology 23: 015602.   DOI   ScienceOn
8 Verma A, Stellacci F. 2010. Effect of surface properties on nanoparticle–cell interactions. Small 6: 12-21.   DOI   ScienceOn
9 Vigderman L, Zubarev ER. 2013. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev. 65: 5663-5676.   DOI   ScienceOn
10 Young JK, Lewinski NA, Langsner RJ, Kennedy LC, Satyanarayan A, Nammalvar V, et al. 2011. Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction. Nanoscale Res. Lett. 6: 428.   DOI   ScienceOn
11 Zhang H, Chen B, Banfield JF. 2010. Particle size and pH effects on nanoparticle dissolution. J. Phys. Chem. C 114: 14876-14884.   DOI   ScienceOn
12 Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.   DOI   ScienceOn
13 Sevier CS, Kaiser CA. 2002. Formation and transfer of disulphide bonds in living cells. Mol. Cell Biol. 3: 836-847.
14 Singh PK, Kundu S. 2013. Biosynthesis of gold nanoparticles using bacteria. Proc. Natl. Acad. Sci. India B Biol. Sci. 84: 331-336.   DOI
15 Singh R, Saxena R, Basniwal RK, Jain VK. 2010. Effect of activated multi walled carbon nanotubes (MWCNTs) and TiO2 nanoparticles on microbial cell integrity. J. Bionanosci. 4: 1-6.   DOI
16 Tabrizi A, Ayhan F, Ayhan H. 2009. Gold nanoparticle synthesis and characterization. J. Biol. Chem. 37: 217-226.
17 Singh R, Smitha MS, Singh SP. 2014. The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 14: 4745-4756.   DOI   ScienceOn
18 Sriram MI, Kalishwaralal K, Gurunathan S. 2012. Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis. Methods Mol. Biol. 906: 33-43.
19 Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, et al. 2011. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 7: 2148-2152.   DOI   ScienceOn
20 Thakker JN, Dalwadi P, Dhandhukia PC. 2013. Biosynthesis of gold nanoparticles using Fusarium oxysporum f.sp cubense JT1, a plant pathogenic fungus. ISRN Biotechnology. DOI: 10.5402/2013/515091.   DOI
21 Mihai S, Dinescu A, Nistor LC, Ciuparu D. 2014. Facile synthesis of gold nanostructures using a one-step chemical method. Adv. Sci. Eng. Med. 6: 399-404.   DOI
22 Orgill M, Wood SA. 2014. Chemistry contributions to nanoscience and nanotechnology education: a review of the literature. J. Nano. Educ. 6: 83-108.   DOI
23 Parikh SJ, Chorover J. 2006. ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide. Langmuir 22: 8492-8500.   DOI   ScienceOn
24 Ramezani F, Ramezani M, Talebi S. 2010. Mechanistic aspects of biosynthesis of nanoparticles by several microbes. Nanocon 10: 1-7.
25 Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E. 2013. SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PLoS One 8: e77486.   DOI
26 Rahayu S, Syah D, Suhartono MT. 2012. Degradation of keratin by keratinase and disulfide reductase from Bacillus sp. MTS of Indonesian origin. Biocatal. Agric. Biotechnol. 1: 152.
27 Rajasree SR, Suman TY. 2012. Extracellular biosynthesis of gold nanoparticles using a gram-negative bacterium, Pseudomonas fluorescens. Asian Pac. J. Trop. Dis. 2: S795-S799.   DOI   ScienceOn
28 Ramnani P, Singh R, Gupta R. 2005. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51: 191-196.   DOI   ScienceOn
29 Rashidi LH, Homayoni H, Chen W. 2014. Nanoparticle applications and targeting strategies in cancer diagnosis and treatment. Rev. Nanosci. Nanotechnol. 3: 31-51.   DOI
30 Gupta S, Singh R. 2014. Hydrolyzing proficiency of keratinases in feather degradation. Indian J. Microbiol. DOI: 10.1007/s12088-014-0477-5.   DOI
31 Han TH, Khan MM, Kalathil S, Lee J, Cho MH. 2013. Synthesis of positively charged gold nanoparticles using a stainless-steel mesh. J. Nanosci. Nanotechnol. 13: 6140-6144.   DOI
32 Hausheer FH. Increasing cancer patient survival time by administration of dithio-containing compounds. U.S. Patent Application 12/807,931, filed September 16, 2010.
33 Kojima S, Nikaido H. 2013. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc. Natl. Acad. Sci. USA 110: E2629-E2634.   DOI   ScienceOn
34 He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater. Lett. 61: 3984-3987.   DOI   ScienceOn
35 Hemath Naveen KS, Kumar G, Karthik L, Bhaskara KV. 2010. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch. Appl. Sci. Res. 2: 161-167.
36 Kaakoush NO, Kovach Z, Mendz GL. 2007. Potential role of thiol:disulfide oxidoreductases in the pathogenesis of Helicobacter pylori. FEMS Immunol. Med. Microbiol. 50: 177-183.   DOI   ScienceOn
37 Lévy R, Shaheen U, Cesbron Y, Sée V. 2010. Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev. 1: 4889.   DOI
38 Marcato PD, Durán N. 2008. New aspects of nanopharmaceutical delivery systems. J. Nanosci. Nanotechnol. 8: 2216-2229.   DOI   ScienceOn
39 McNeil1 SE. 2005. Nanotechnology for the biologist. J. Leukoc. Biol. 78: 585-594.   DOI   ScienceOn
40 Correa Llantén DN, Muñoz Ibacache SA, Castro ME, Muñoz PA, Blamey JM. 2013. Gold nanoparticles synthesized by Geobacillus sp. strain ID17, a thermophilic bacterium isolated from Deception Island, Antarctica. Microb. Cell Fact. 12: 75.   DOI   ScienceOn
41 Das SK, Das AR, Guha AK. 2010. Microbial synthesis of multishaped gold nanostructures. Small 6: 1012-1021.   DOI   ScienceOn
42 Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotechnol. Biol. Med. 5: 382-386.   DOI   ScienceOn
43 Du L, Jiang H, Liu X, Wang E. 2007. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α a nd its application on direct electrochemistry of hemoglobin. Electrochem. Commun. 9: 1165-1170.   DOI   ScienceOn
44 El-Deeb B, Mostafa NY, Tork S, El-Memoni N. 2014. Optimization of green synthesis of gold nanoparticles using bacterial strain Alcaligenes faecalis. Nanosci. Nanotechnol. Lett. 6: 372-384.   DOI
45 Eser M, Masip L, Kadokura H, Georgiou G, Beckwith J. 2009. Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm. Proc. Natl. Acad. Sci. USA 106: 1572-1577.   DOI   ScienceOn
46 Gao Y, Hu Y, Li C, Zhao X, Huang X, Liu R. 2014. Kiwifruit as reducing reagent for green synthesis of gold nanoparticles at room temperature. Nanosci. Nanotechnol. Lett. 6: 118-123.   DOI
47 Gericke M, Pinches A. 2006. Microbial production of gold nanoparticles. Gold Bull. 39: 22-28.   DOI
48 Vanaja M, Rajeshkumar S, Gnanajobitha G, Paulkumar K, Malarkodi C, Annadurai G. 2013. Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Adv. Appl. Sci. Res. 4: 50-55.
49 Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R. 2009. Extracellular biosynthesis of gold nanoparticles using Aspergillus niger – its characterization and stability. Chem. Eng. Technol. 32: 1036-1041.   DOI   ScienceOn