DOI QR코드

DOI QR Code

Isolation, Identification, and Characterization of a Keratin-degrading Bacterium Chryseobacterium sp. P1-3

  • Hong, Sung-Jun (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Park, Gun-Seok (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jung, Byung Kwon (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Khan, Abdur Rahim (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Park, Yeong-Jun (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Lee, Chang-Hyun (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2015.04.10
  • Accepted : 2015.06.29
  • Published : 2015.09.30

Abstract

In this study, a keratin-degrading bacterium was isolated from soil contaminated with feather waste. The isolated strain was identified as Chryseobacterium sp. P1-3 on the basis of the 16S rRNA gene sequence alignment. Chryseobacterium sp. P1-3 is currently used in various biotechnological applications (e.g., in the hydrolysis of poultry feathers). It hydrolyzed the feather meal within 2 days and possesses a high level of keratinase activity (98 U/mL). The keratinase, partially purified from this strain, prefers casein as a substrate and shows optimal activity at a temperature of $30^{\circ}C$ and at a pH of 8.0.

Keywords

References

  1. Bach E, Cannavan FS, Duarte FR, Taffarel JA, Tsai SM, and Brandelli A (2011) Characterization of feather-degrading bacteria from Brazilian soils. Int Biodeterior Biodegrad 65, 102-7. https://doi.org/10.1016/j.ibiod.2010.07.005
  2. Balaji S, Kumar MS, Karthikeyan R, Kumar R, Kirubanandan S, Sridhar R et al. (2008) Purification and characterization of an extracellular keratinase from a hornmeal-degrading Bacillus subtilis MTCC (9102). World J Microb Biot 24, 2741-5. https://doi.org/10.1007/s11274-008-9782-7
  3. Bockle B, Galunsky B, and Muller R (1995) Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl Environ Microbiol 61, 3705-10.
  4. Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Tech 1, 105-16. https://doi.org/10.1007/s11947-007-0025-y
  5. Chaudhari PN, Chaudhari BL, and Chincholkar SB (2013) Iron containing keratinolytic metallo-protease produced by Chryseobacterium gleum. Process Biochem 48, 144-51. https://doi.org/10.1016/j.procbio.2012.11.009
  6. Corrêa APF, Daroit DJ, and Brandelli A (2010) Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. Int Biodeterior Biodegrad 64, 1-6. https://doi.org/10.1016/j.ibiod.2009.06.015
  7. Cortezi M, Cilli E, and Contiero J (2008) Bacillus amyloliquefaciens: a new keratinolytic feather-degrading bacteria. Curr Trends Biotechnol Pharm 2, 170-7.
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-91. https://doi.org/10.2307/2408678
  9. Gradisar H, Kern S, and Friedrich J (2000) Keratinase of Doratomyces microsporus. Appl Microbiol Biotechnol 53, 196-200. https://doi.org/10.1007/s002530050008
  10. Gupta R and Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70, 21-33. https://doi.org/10.1007/s00253-005-0239-8
  11. Gurav RG and Jadhav JP (2013) Biodegradation of keratinous waste by Chryseobacterium sp. RBT isolated from soil contaminated with poultry waste. J Basic Microbiol 53, 128-35. https://doi.org/10.1002/jobm.201100371
  12. Hugo CJ, Segers P, Hoste B, Vancanneyt M, and Kersters K (2003) Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53, 771-7. https://doi.org/10.1099/ijs.0.02232-0
  13. Jeong J-H, Jeon Y-D, Lee O-M, Kim J-D, Lee N-R, Park G-T et al. (2010) Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation 21, 1029-40. https://doi.org/10.1007/s10532-010-9363-y
  14. Joshi SG, Tejashwini M, Revati N, Sridevi R, and Roma D (2007) Isolation, identification and characterization of a feather degrading bacterium. Int J Poult Sci 6, 689-93. https://doi.org/10.3923/ijps.2007.689.693
  15. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H et al. (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62, 716-21. https://doi.org/10.1099/ijs.0.038075-0
  16. Kumar AG, Swarnalatha S, Gayathri S, Nagesh N, and Sekaran G (2008) Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J Appl Microbiol 104, 411-9.
  17. Letourneau F, Soussotte V, Bressollier P, Branland P, and Verneuil B (1998) Keratinolytic activity of Streptomyces sp. S. K1-02: a new isolated strain. Lett Appl Microbiol 26, 77-80. https://doi.org/10.1046/j.1472-765X.1998.00281.x
  18. Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-75.
  19. Lv L-X, Sim M-H, Li Y-D, Min J, Feng W-H, Guan W-J et al. (2010) Production, characterization and application of a keratinase from Chryseobacterium L99 sp. nov. Process Biochem 45, 1236-44. https://doi.org/10.1016/j.procbio.2010.03.011
  20. Macedo AJ, Da Silva WOB, Gava R, Driemeier D, Henriques JaP, and Termignoni C (2005) Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl Environ Microbiol 71, 594-6. https://doi.org/10.1128/AEM.71.1.594-596.2005
  21. Nam G-W, Lee D-W, Lee H-S, Lee N-J, Kim B-C, Choe E-A et al. (2002) Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol 178, 538-47. https://doi.org/10.1007/s00203-002-0489-0
  22. Onifade A, Al-Sane N, Al-Musallam A, and Al-Zarban S (1998) A review:potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66, 1-11. https://doi.org/10.1016/S0960-8524(98)00033-9
  23. Riessen S and Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5, 399-408. https://doi.org/10.1007/s007920100209
  24. Riffel A, Brandelli A, Bellato CDM, Souza GHMF, Eberlin MN, and Tavares FCA (2007) Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J Biotechnol 128, 693-703. https://doi.org/10.1016/j.jbiotec.2006.11.007
  25. Riffel A, Lucas F, Heeb P, and Brandelli A (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179, 258-65. https://doi.org/10.1007/s00203-003-0525-8
  26. Saitou N and Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-25.
  27. Shih JCH (1993) Recent Development in Poultry Waste Dizgestion and Feather Utilization-A Review. Poult Sci 72, 1617-20. https://doi.org/10.3382/ps.0721617
  28. Suh HJ and Lee HK (2001) Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J Protein Chem 20, 165-9. https://doi.org/10.1023/A:1011075707553
  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-9. https://doi.org/10.1093/molbev/msr121
  30. Thys R and Brandelli A (2006) Purification and properties of a keratinolytic metalloprotease from Microbacterium sp. J Appl Microbiol 101, 1259-68. https://doi.org/10.1111/j.1365-2672.2006.03050.x
  31. Vandamme P, Bernardet J-F, Segers P, Kersters K, and Holmes B (1994) NOTES: New Perspectives in the Classification of the Flavobacteria:Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827-31. https://doi.org/10.1099/00207713-44-4-827
  32. Venter H, Osthoff G, and Litthauer D (1999) Purification and Characterization of a Metalloprotease from Chryseobacterium indologenes Ix9a and Determination of the Amino Acid Specificity with Electrospray Mass Spectrometry. Protein Expression Purif 15, 282-95. https://doi.org/10.1006/prep.1998.1020
  33. Wang SL, Hsu WT, Liang TW, Yen YH, and Wang CL (2008) Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour Technol 99, 5679-86. https://doi.org/10.1016/j.biortech.2007.10.024
  34. Wang X and Parsons CM (1997) Effect of processing systems on protein quality of feather meals and hog hair meals. Poult Sci 76, 491-6. https://doi.org/10.1093/ps/76.3.491
  35. Weisburg WG, Barns SM, Pelletier DA, and Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  36. Weon H-Y, Kim B-Y, Yoo S-H, Kwon S-W, Stackebrandt E, and Go S-J (2008) Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58, 470-3. https://doi.org/10.1099/ijs.0.65295-0
  37. Zerdani I, Faid M, and Malki A (2004) Feather wastes digestion by new isolated strains Bacillus sp. in Morocco. Afr J Biotechnol 3, 67-70. https://doi.org/10.5897/AJB2004.000-2012

Cited by

  1. Keratin: dissolution, extraction and biomedical application vol.5, pp.9, 2017, https://doi.org/10.1039/C7BM00411G
  2. Transforming Chicken Feather Waste into Feather Protein Hydrolysate Using a Newly Isolated Multifaceted Keratinolytic Bacterium Chryseobacterium sediminis RCM-SSR-7 pp.1877-265X, 2019, https://doi.org/10.1007/s12649-017-0037-4
  3. Species with Keratinolytic Activity from Field Soil in Korea vol.46, pp.3, 2018, https://doi.org/10.1080/12298093.2018.1514732
  4. Microbial production and industrial applications of keratinases: an overview pp.1618-1905, 2018, https://doi.org/10.1007/s10123-018-0022-1
  5. Immobilization of Bacillus licheniformis using Fe3O4@SiO2 nanoparticles for the development of bacterial bioreactor vol.35, pp.2, 2015, https://doi.org/10.13005/ojc/350249
  6. Chryseobacterium aquifrigidense FANN1 Produced Detergent-Stable Metallokeratinase and Amino Acids Through the Abasement of Chicken Feathers vol.9, pp.None, 2015, https://doi.org/10.3389/fbioe.2021.720176