• Title/Summary/Keyword: Feasibility evaluation

Search Result 1,422, Processing Time 0.029 seconds

A Study on the Improvement of the Consultations on Amendment in Environmental Impact Assessment of Industrial Complex Development (산업단지 조성사업의 환경영향평가 변경협의 개선방안 연구)

  • Joo, Yong-Joon;Sagong, Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.3
    • /
    • pp.129-140
    • /
    • 2022
  • Environmental impact assessment on development projects is a process in which various stakeholders derive consultations by reflecting project characteristics and regional environmental status, and implementation of consultations is a prerequisite for securing sustainability of the local environment. The business plan can be changed to respond to changes in social and environmental conditions. And the business plan for which the environmental impact assessment consultation has been completed, it can be changed as a systematically prepared procedure (called Consultations on Amendment). As a result of investigating and analyzing the current status and major changes in the development project, Consultations on Amendment in industrial complexes were the most common, and the environmental impact is increasing accordingly. As the results of the analysis of operational status and the case studies, the main causes of Consultations on Amendment in industrial complex can be summarized into three categories: (1) formal demand forecasting for tenant industries, (2) excessive omission and simplification of administrative procedures under the Special Act, and (3) the use of an expedient change consultation system to facilitate environmental impact assessment consultation and shorten the period. This study proposes the following three measures to prevent the deterioration of the environmental impact assessment function due to frequent consultations on industrial complex changes; (1) Ensuring residents' participation procedures for Consultations on Amendment that changes important matters, (2) Reasonable revision of the "Simplification of Industrial Complex Procedures Act" to enhance the feasibility of industrial complex development plans and locations, (3) Development of evaluation criteria and methods for verification of real demand for objective demand management for industrial complexes, and (4) Preparation of a review guideline for Consultations on Amendment.

Evaluation on the Performance of Relief Wells Using Geosynthetics Blanket Length as a Parameter in an Agricultural Reservoir Embankment (농업용 저수지 제방에서 토목섬유 블랭킷의 길이에 따른 감압정의 성능 평가)

  • Ryu, Jeonyong;Kim, Seungwook;Chang, Yongchai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.6
    • /
    • pp.5-17
    • /
    • 2022
  • The performance of the relief wells installed for the purpose of controlling seepage of the dam embankment is affected by various parameters such as diameter, spacing, penetration rate, permeability coefficient of the ground, thickness of the foundation layer. Therefore, when the relief wells are adopted for the purpose of reducing seepage pressure, these parameters should be sufficiently reviewed to determine the installation specifications of the relief wells. This study evaluated the effect of the length of the geosynthetics blanket on the performance of the relief wells installed in the downstream part of the dam embankment with blankets in the upstream and downstream part of the dam embankment as countermeasure methods to control seepage of the dam embankment. In the relationship between the length of the upstream and downstream blanket and the discharge, the discharge of the relief wells decreases as the length of the upstream blanket increases, and on the other hand, the discharge of the relief wells decreases as the length of the downstream blanket increases. In the upper and lower blanket length-spacing relationship, as the length of the upstream blanket increases, the spacing of the relief wells increases and as the length of the downstream blanket increases, the spacing of the relief wells decreases. Therefore, when installing the relief wells in parallel with the blanket, it was found that increasing the length of the upstream blanket is more efficient than increasing the length of the downstream blanket in order to minimize the discharge of seepage discharge and to ensure economic feasibility by wider installation of the relief wells.

Estimation on End Vertical Bearing Capacity of Double Steel-Concrete Composite Pile Using Numerical Analysis (수치해석을 이용한 이중 강-콘크리트 합성말뚝 연직지지력 평가)

  • Jeongsoo, Kim;Jeongmin, Goo;Moonok, Kim;Chungryul, Jeong;Yunwook, Choo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.5-15
    • /
    • 2022
  • Conventionally, because evaluation methods of the bearing capacity for double steel pipe-concrete composite pile design have not been established, the conventional vertical bearing capacity equations for steel hollow pile are used. However, there are severe differences between the predictions from these equations, and the most conservative one among vertical bearing capacity predictions are conventionally adopted as a design value. Consequently, the current prediction method for vertical bearing capacity of composite pile prediction composite pile causes design reliability and economical feasibility to be low. This paper investigated mechanical behaviors of a new composite pile, with a cross-section composed of double steel pipes filled with concrete (DSCT), vertical bearing capacities were analyzed for several DSCT pile conditions. Axisymmetric finite element models for DSCT pile and surrounding ground were created and they were used to analyze effects on behaviors of DSCT pile pile by embedding depth, stiffness of plugging material at pile tip, height of plugging material at pile tip, and rockbed material. Additionally, results from conventional design prediction equations for vertical bearing capacity at steel hollow pile tip were compared with that from numerical results, and the use of the conventional equations for steel hollow pile was examined to apply to that for DSCT pile.

Investment Benefit Analysis of Safety Assessment and Inspection Technologies of Hydrogen Bus Fuel System Using Contingent Valuation Methods (조건부가치측정법을 이용한 수소버스 연료장치 안전성 평가 및 검사기술에 대한 투자 편익 분석)

  • Seohyun, Lim;Jeong Ah, Jang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2022
  • Recently, the government has been expanding the supply of hydrogen vehicles according to the roadmap for vitalizing the hydrogen economy, but is developing safety assessment and inspection technology for the relevant vehicles. This study analyzed the prevention of hydrogen bus accidents' economic effect that arises from the application and development of large-capacity CHSS oil pressure repetition-test assessment technology, hydrogen bus internal chamber pressure transmission and emission volume inspection technology, among various technologies capable of assessing the safety of a hydrogen bus fuel system. To this end, the contingent valuation method (CVM), one of the value evaluation methods of non-market goods, was applied to investigate users' willingness to pay for each inspection technology. The survey for users' willingness to pay was conducted by attaching posters to promote surveys on the internet and within buses to the entire public. As a result of the analysis, the average WTP of the hydrogen bus internal chamber pressure transmission volume inspection technology was 25.3 KRW, the average WTP of the hydrogen bus internal chamber pressure emission volume inspection technology was 18.6 KRW, and the average WTP of the large-capacity CHSS oil pressure repetition-test assessment technology was measured at 16.7 KRW. In addition, the costs and benefits of the introduction of the relevant inspection technology were defined through the interviewing of experts at related research institutions and businesses. As a result of conducting an economic analysis (4.5% discount rate) according to the development of each inspection technology, economic feasibility was seen in all assessment and inspection technologies. As much as the technology is indispensable for the safe use of hydrogen buses, it shows that investment in related technology is very necessary in the future. However, because it was decided that the relevant analysis will differ according to the distribution rate of hydrogen buses, further analysis following this future distribution rate of hydrogen buses is needed, and future users should be made clearly aware of the safety and environmental nature of the technology.

Effects of the slaughter weight of non-lean finishing pigs on their carcass characteristics and meat quality

  • Oh, Sang-Hyon;Lee, Chul Young;Song, Dong-Heon;Kim, Hyun-Wook;Jin, Sang Keun;Song, Young-Min
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.353-364
    • /
    • 2022
  • The present study aimed to assess the feasibility of increasing the slaughter weight (SW) of non-lean finishing pigs to improve their meat quality. A total of 36 (Landrace × Yorkshire) × Duroc gilts and barrows were slaughtered at 115 (Av), 125 (Hi), or 135 (XHi) kg, followed by physicochemical analyses and sensory evaluation on their longissimus dorsi (LD) and Semimembranosus (SM) muscles. Backfat thickness was greater (p < 0.05) for the XHi (31.2 mm) and Hi (29.3 mm) groups than for Av (25.0 mm). Dressing percentage and yield of the belly per whole carcass were also slightly greater for XHi and Hi vs. Av. The intramuscular fat (IMF) content of SM was greater for XHi (2.64%) than for Av (1.83%) and Hi (2.04%) and also was correlated with SW (r = 0.55). The pH value, lightness, redness, drip loss, shear force, and moisture and protein contents of LD and SM, as well as IMF content of LD, were unaffected by SW. Percentages of 14:0, 16:0, and total saturated fatty acids (FA) were less for Hi and XHi vs. Av in SM, those of total unsaturated FA, 18:2, 20:4, and n-6 being opposite; FA composition of LM was not influenced by SW except for a reduced 18:0 percentage for XHi vs. Av. The sensory score was less for XHi vs. Av for odor in fresh LD and SM, and less for Hi and XHi vs. Av for aroma in fresh LM; scores for color, drip loss, marbling, and acceptability were unaffected by SW. As for cooked muscles, none of the scores for color, aroma, flavor, juiciness, tenderness, and acceptability was affected by SW, except for a greater LD color score for Hi and XHi vs. Av. Collectively, the results suggested that the increased yield of the carcass and belly due to increased SW is outbalanced negatively by excessive backfat deposition in production efficiency, whereas the SW increase exerts little influence on overall sensory quality of fresh or cooked meat. Production of non-lean market pigs overweighing 115 kg therefore will be uneconomical unless consumers pay a substantial premium for the over-fattened pork.

A Study on the Feasibility of Lead(II) Iodide and Gd2O2S:Tb Overlapping Sensors in Gamma Source Conditions using FLUKA Simulation (FLUKA 전산 모사를 통한 감마선원 조건에서의 요오드화납(II)과 Gd2O2S:Tb가 결합된 센서의 적용가능성 연구)

  • Yang, Seung-Woo;Park, Yoon-Hee;Park, Ji-Koon;Heo, Ye-Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.381-386
    • /
    • 2022
  • Non-Destruction Test (NDT) is a method to check internal defects without destroying the product. Among them, radiographic testing (RT) uses high-energy radiation, so it is very important to prevent radiation exposure of workers. Therefore, in this study, in this study, a radiation sensor structure that improves radiation detection performance compared to the existing PbI2 and can immediately detect accidents in RT was presented. For evaluation, the conversion efficiency was analyzed in the gamma ray source through FLUKA simulation. PbI2 with overlapping Gd2O2S:Tb presented in this study showed a higher radiation sensitivity from 1.22 to 3.22 times than that of non-overlapping PbI2. This indicates that the presented sensor is suitable for use as a radiation sensor for source detection in RT.

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method (격자볼츠만기법을 이용한 선박 파이프내 유동소음해석)

  • Beom-Jin Joe;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.512-519
    • /
    • 2023
  • Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.

Evaluation of low-vibration electronic detonator blasting method to improve constructability in non-vibration excavation section (무진동 굴착구간에서의 시공성 향상을 위한 미진동 전자발파공법 평가)

  • Seung-won Jung;Jin-Hyuk Song;Nam-Sun Hwang;Hyun-Gi Kim;Nam-Soo Kim;Jong-woo Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.157-173
    • /
    • 2023
  • Although this site is designed with a non-vibration excavation method for a section of 265 m, there are concerns about decline of constructability and economic feasibility. For this reason, the low-vibration electronic detonator blasting method was suggested. To evaluate the applicability of the low-vibration electronic detonator blasting method, the damage range of blasting vibration of low-vibration electronic detonator blasting applied just before the site (suggestion I) and low-vibration electronic detonator blasting constructed close range the subway like this site (suggestion II) was analyzed. As a result of comparing the blasting vibration damage ranges of the two suggestions, the damage range of suggestion II was calculated more conservatively. Considering the specificity of the close range of this site, suggestion II was selected for design change for safer construction. As a result, it is predicted that there will be no damage to the structure even if the 72 m section out of the non-vibration excavation 265 m section is changed to the Low-vibration electronic detonator blasting. And it is evaluated that high economic benefits can be obtained because the total expected excavation period can be reduced by 144 days from 662.5 days.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.