• Title/Summary/Keyword: Fe-SOD

Search Result 109, Processing Time 0.023 seconds

Antioxidants of Pine Needle Extracts According to Preparation Method (제조방법별 솔잎추출물의 항산화성 검토)

  • Kim, Soo-Min;Kim, Eun-Ju;Cho, Young-Suk;Sung, Sam-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.527-534
    • /
    • 1999
  • This study was carried out to investigate the effects of pine needle extracts on lipid oxidation and free radical reaction in iron sources reacted with active oxygen species. The results were summarized as follow; the catalytic effects of active oxygen on lipid oxidation in oil emulsion tended to be showed $OH,\;H_2O_2\;and\;KO_2$ in order. At the same time, pine needle extracts itself were tended to be showed a little catalytic effects. Active oxygen scavenging ability of pine needle extracts didn't show, but pine needle extracts played role as a strong chelating agents to bind iron ion if $Fe^{2+}$ ion exist in oil emulsion. The content of $Fe^{2+}$ ion and total iron in CPNP were higher than those of HPNP and FPN. The content of ascorbic acid of FPN showed the highest (87.77 ppm) among several pine needle extracts. Electron donating ability of HPNP and CPNP were 81% and 78%, respectively, which were showed higher content than those of FPN. The SOD-like activity of HPNP showed 44.30%, compared to other pine needle extracts which means the most strong antioxidant reaction. The nitrite scavenging effects were tended to be different, depending on pH value as pH value was increased. Especially, they didn't show the nitrite scavenging effect in pH6.0.

  • PDF

Changes in the Activities of Antioxidant Enzymes during Chilling Stress in Chilling-Tolerant and Chilling-Sensitive Cultivars of Cucurbita spp. (내저온성과 민감성 호박 품종의 저온 스트레스에 대한 항산화효소의 활성 차이)

  • Kang, Nam-Jun;Kwon, Joon-Kook;Cho, Yong-Seop;Choi, Young-Hah
    • Journal of Bio-Environment Control
    • /
    • v.16 no.1
    • /
    • pp.54-61
    • /
    • 2007
  • To determine whether antioxidant enzyme systems are related to chilling tolerance, changes of antioxidant enzyme activities during the chilling stress were determined in the leaves of a chilling-tolerant cultivar (Cucurbita ficifolia, cv. Heukjong) and a chilling-sensitive cultivar (Cucurbita moschata, cv. Jaerae 13). Leaves of chilling-tolerant plant have two major isoforms, Fe-SOD and Mn-SOD, at the Rm values of 0.20 and 0.52, respectively. In leaves of chilling-sensitive plant, two major isozymes of SOD was observed, one isoform is Mn-SOD at the Rm value of 0.20, and the other isoform is Cu/zn-SOD at the nm value of 0.58. When plants were treated with chilling stress, Cu/zn-SOD at the Rm value of 0.58 was newly expressed at 10 days after chilling stress in the chilling-tolerant plants, and density of this band increased at five days after chilling stress in the chilling-sensitive plants. One APX isozyme band was observed in unstressed plants of both cultivars. Under the chilling stress one APX isozyme band was newly expressed at 10 days after chilling stress in the chilling-tolerant cultivar. Significant genotype differences were observed fnr POD isozyme banding patterns such as few main isozyme bands in chilling-tolerant plants, and one band in chilling-sensitive plants. Densities of three POD isozyme bands at the Rm of 0.36, 0.40 and 0.54 increased at 10 days after chilling stress in the chilling-tolerant plants, while two bands at the nm of 0.36 and 0.54 increased at 10 days and 20 days after chilling stress in the chilling-sensitive plants, respectively. Activities of SOD, APX and POD significantly increased during five days after chilling stress in both cultivars. In the chilling-tolerant cultivar, activities of these enzymes were higher in chilling-stressed plant than in unstressed plants. However, activities of these enzymes in the chilling-sensitive cultivar decreased rapidly after five days of chilling stress, and were lower in chilling stressed plants than in unstressed plants.

Generation of Free Radicals by Interaction of Iron with Thiols in Human Plasma.

  • Lee, S. J.;K. Y. Chung;J. H. Chung.
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.138-138
    • /
    • 2002
  • Oxidative stress has been associated with a number of diseases in human. Among the sources that can generate oxidative stress, it has been reported that iron can generate reactive oxygen species (ROS)with thiol. In iron overload state, increased thiol levels in plasma appeared to be associated with human mortality. In this study we examined whether iron could interact with thiols in plasma, generating ROS. In human plasma, unlike with Fe(III), Fe(II) increased lucigenin-enhanced chemiluminescence in concentration-dependent manner, and this was inhibited by SOD. Boiling of plasma did not affect chemiluminescence induced by Fe(II). Hovever, thiol depletion in plasma by pretreatment with N-ethylmaleimide (NEM)decreased Fe(II)-induced chemiluminescence significantly, suggesting that Fe(II) generated superoxide anion by the nonenzymatic reaction with plasma thiol. Consistent with this findings, albumin, the major thiol contributor in plasma, also generated ROS with Fe(II) and this generation was inhibited by pretreatment with NEM. Treatment with Fe(II) to plasma resulted un significant reduction of oxygen radical absorbance capacity (ORAC) value, suggest that total antioxidant capacity could diminished in iron overload state. In conclusion, In iron overload state, plasma may be affected by oxidative stress mediated by nonenzymatic reaction of Fe (II)with plasma thiol.

  • PDF

Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity

  • Isarankura-Na-Ayudhya, Chartchalerm;Tansila, Natta;Worachartcheewan, Apilak;Bulow, Leif;Prachayasittikul, Virapong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.532-541
    • /
    • 2010
  • Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in catalytic constant ($k_{cat}$) was obtained in P54R variant,which was presumably attributable to the lower rigidity and higher hydrophilicity of the distal cavity arising from substitution of proline to arginine. None of the modifications altered the affinity towards either $H_2O_2$ or ABTS substrate. Spectroscopic studies revealed that VHb variants harboring the T29H mutation apparently demonstrated a spectral shift in both ferric and ferrous forms (406-408 to 411 nm, and 432 to 424-425 nm, respectively). All VHb proteins in the ferrous state had a $\lambda_{soret}$ peak at ~419 nm following the carbon monoxide (CO) binding. Expression of the P54R mutant mediated the downregulation of iron superoxide dismutase (FeSOD) as identified by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting (PMF). According to the high peroxidase activity of P54R, it could effectively eliminate autoxidation-derived $H_2O_2$, which is a cause of heme degradation and iron release. This decreased the iron availability and consequently reduced the formation of the $Fe^{2+}$-ferric uptake regulator protein ($Fe^{2+}$-Fur), an inducer of FeSOD expression.

Effect of Ethanol Extracts in Pinus densiflora, Lithospermum erythrorhizon on the Lipid Oxidation of Oil Emulsion (식물체(솔잎, 자초)의 에탄올 추출물이 유탁액의 지방산화에 미치는 영향)

  • 김수민;조영석;성삼경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.984-989
    • /
    • 1999
  • This study was carried out to investigate the effects of ethanol extracts on lipid oxidation of oil emulsion. The results are as follows; The scavenging ability of plant extracts for hydroxyl radical was found, and plant extracts played an important role as a strong chelating agents to bind iron if Fe2+ ion exists in oil emulsion. Pinus densiflora(PD), Lithospermum erythrorhizon(LE) and PD+LE acted as strong chelating agents to bind iron to reduce lipid oxidation in oil emulsion. The content of Fe2+ ion in ethanol extracts from LE and PD+LE were significantly higher(p<0.05) than that of ethanol extracts from PD. The content of total iron has same tendency. The ascorbic acid content of PD(16.36ppm) was slightly higher than those of LE(13.08ppm). Electron donating ability of PD was significantly higher(p<0.05) than those of LE. However, the superoxide(SOD) like ability of LE showed a little higher than those of LE and PD+LE, which means the strong antioxidant activity of LE. The nitrite scavenging effects were dependent on pH value, however, they decreased as pH value increased. Especially, they almost didn't show the nitrite scavenging effect in pH 6.0. In conclusion, the PD and LE extracts may be used as natural antioxidant sources to reduce lipid oxidation in oil emulsion.

  • PDF

Effect of Antioxidants and Chelating Agents on 1,2,4-benzenetriol-induced DNA damage in HL-60 cells analysed by alkaline comet assay (항산화제 및 금속착화합물이 1,2,4-benzenetriol에 의해 유도된 HL-60 세포의 DNA 손상에 대한 보호 효과)

  • 김선진;정해원
    • Environmental Mutagens and Carcinogens
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • The mechanisms of benzene toxicity is not fully elucidated, although the metabolism of benzene is very well understood. In order to study the mechanism of benzene toxicity, we investigated DNA damage induced by benzene metabolite, 1,2,4-benzenetriol (BT) in HL-60 cells by alkaline comet assay. To investigate the mechanism of cellular DNA damage induced by BT, the cells were treated with antioxidant such as vitamin C, SOD, catalase, and chelating agent such as deferoxamine (DFO), bathocuproinedisulfonic acid (BCDS). BT induced DNA damage in dose-dependent manner at concentration between 10$\mu\textrm{m}$ and 100$\mu\textrm{m}$. The antioxidant vitamin C itself induced DNA damage at higher concentration. The DNA damage induced by BT in HL-60 cells was protected at low concentraiton of vitamin C whereas no protective effect was found at high concentration. In hibitory effect of SOD on DNA damage by BT was observed and this suggested that BT produce superoxide anion (O2-) causing DNA damage. Catalase protected BT-induced DNA damage suggesting that BT produce H2O2 during autooxidation of BT. Both Fe(II)-specific cheiating agent, deferoxamine (DFO) and Cu(I)-specific chelating agent, bathocuproinedisulfonic acid (BCDS) inhibited BT0induced DNA damage. This suggested that DNA damage was caused by active species which was produced DAN damage. This suggested that DNA damage was caused by active species which was produced by the autooxidation of BT in the presence of Cu(II) and Fe(III). These findings suggest that reactive oxygen species play an important role in the mechanism of toxicity induced by benzene metabolites.

Antioxidant and Antibacterial Effects of Korean Isodon japonicus H. (한국산 연명초(延命草)(Isodon japonicus Hara)의 항산화, 항균효과)

  • An, Bong-Jeun;Park, Jung-Mi;Bae, Ho-Jung;Pyun, Jeong-Ran;Song, Mi-Ae
    • Applied Biological Chemistry
    • /
    • v.49 no.2
    • /
    • pp.129-134
    • /
    • 2006
  • Biological activities and application of Isodon japonicus H. were investigated. In the physiological activities, the electron donating ability (EDA) was 66.3% in 100 ppm and SOD-like activity was as high as 85.0% in 1,000 ppm with gradual increase. As for the inhibitory effect of xanthine oxidase, it was 70.0% in 1,000 ppm and as low as 40.0% in 500 ppm; also, as for the inhibitory effect of tyrosinase, it was as low as 20.5% below 1,000 ppm. The tyrosinase inhibition effect related to skin whitening function showed 30.0% at 1,000 ppm level or below, indicating a relatively low effect. As for the result of measuring the lipid oxidation, all the concentrations of medical ion treatments showed anti-acidification ability; also, as for the metal ion blocking effects against the lipid oxidation promoting factors $(Fe^{2+}\;and\;Cu^{2+})$, $Fe^{2+}$ was better than $Cu^{2+}$ and all concentrations of medical ion treatments was 60.0% in 100 ppm. Also, the clear zone against various bacteria at 0.5 and 1.0 mg/disc was clearly shown. When it was applied into a normal skin-softener, it was safe, showing its potential as a natural material of cosmetics.

Antioxidant Effects and Application as Natural Ingredients of Korean Sanguisorbae officinalis L. (한국산 지유(地楡)(Sanguisorbae officinalis L.)의 항산화 효과 및 천연소재로서의 활용방안)

  • Lee, Jin-Tae;Lee, Soon-Ae;Kwak, Jae-Hoon;Park, Jung-Mi;Lee, Jin-Young;Son, Jun-Ho;An, Bong-Jeun
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.244-250
    • /
    • 2004
  • Biological activities and application of Sanguisorbae officinalis L. were investigated. In the enzymological physiological activities, the electron donating ability (EDA) was 54.9% in 10 ppm and it was over 90% over 50 ppm and SOD-like activity was high as 65.4% in 1000 ppm, it was gradual increased. As inhibitory effect of xanthine oxidase, it was 17.9% in 200 ppm and little low as 36.9% in 500 ppm and inhibitory effect of tyrosinase. As the result of measuring the lipid oxidation, all the concentrations of medical ion treatments had the ability to keep it from acidification and metal ion blocking effects about the lipid oxidation promoting factors ($Fe^{2+}$ and $Cu^{2+}$), $Fe^{2+}$ was better than $Cu^{2+}$ and all concentrations of medical ion treatments was 40% in 50 ppm. When it was applied into normal skin-softener it showed safe effect so that we can expect that as the natural material of cosmetics.

Formation of Superoxide Anion in the Autoxidation of L-Ascorbic Acid in the Presence of Heavy Metal Ions (중금속 이온 존재하에서의 아스코르빈산 자동산화 과정에서 $O_2\bar{{\bullet}}$ 생성)

  • Kim, Mi-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.378-383
    • /
    • 2001
  • Formation of superoxide anion $O_2\bar{{\bullet}}$ in the autoxidation of L-ascorbic acid (AsA) in the presence of heavy metal ions were determined. The generation of $O_2\bar{{\bullet}}$ was studied by using superoxide dismutase (SOD) in aqueous and buffer solution, and using nitro bule tetrazolium (NBT) in methanol solution. The remaining amount of AsA was significantly higher in the presence of SOD than in its absence. It suggested that SOD stabilizes AsA in aqueous and buffer solution because of scavenging $O_2\bar{{\bullet}}$ formed during the autoxidation reaction of AsA in the presence of heavy metal ions. NBT has an absorption maximum at about 560 nm in methanol solution. The absorbance at 560 nm increased during the oxidation of AsA, suggested the formation of $O_2\bar{{\bullet}}$in methanol solution. Thus, the formation of $O_2\bar{{\bullet}}$ was confirmed during the autoxidation of AsA not only in aqueous solution but also in methanol solution in the presence heavy metal ions.

  • PDF

An Experimental Study on the Pond Sediment and Water Quality Purification using Oxygen Solubilization Device(OSD) System (산소용해수를 이용한 호소 저질 및 수질개선에 관한 실험적 연구)

  • Kim, Young-Taek;Bae, Yoon-Sun;Roh, Eun-Kyung;Park, Chul-Hwi;Lee, Yeon-Ku
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.94-103
    • /
    • 2006
  • The pollution in closing water can be caused by not only artificial factor like sewage but also natural factor like elution from sediment. In this study we analyzed Sediment Oxygen Demand (SOD) for verification of sediment purification effect and sediment elution experiment as well as general items like COD, TN, TP, SS to complement and assess the effect of sediment and water quality. The experiment result showed that the release rate of OSD system were 4 times and 3 times as large as control for P and Fe respectively. SOD for operated OSD system and control were $12.18gO_2{\cdot}m^{-2}{\cdot}d^{-1}$ and $47.95gO_2{\cdot}m^{-2}{\cdot}d^{-1}$. From water qualities analyzed by COD, TN, TP, SS, chlorophyll-a, the removal efficiency increase of TN, TP, chlorophyll-a and COD were about 10~20%, 40~50% and 10% respectively. In conclusion, OSD can contribute to improvement of both the waterbody and the sediment environment effectively.