• Title/Summary/Keyword: Fe-Mn-Cr steel

Search Result 62, Processing Time 0.026 seconds

The Effects of Cold Rolling on the Graphitization in Boron Addition High Carbon Steel (B첨가 고탄소강의 흑연화에 미치는 냉간압연의 영향)

  • Woo, K.D.;Park, Y.K.;Ryu, J.H.;Lee, C.H.;Ra, J.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 1999
  • The graphitization is affected by the addition of small amount of the elements(such as Si, Al, Ni, B, Cr and Mn etc.) and the pre-treatment(such as cold rolling). Boron is well known element to accelerate the graphitization of cementite in high carbon steels. Also, cold rolling is known to accelerate the graphitization. But the graphitization nucleation mechanism by cold rolling is few reported. Therefore the effect of cold rolling in Fe-0.5%C-1.0%Si-0.47%Mn-0.005%B steel on the graphitization is investigated quantitatively using hardness test, optical microscope and scanning electron microscope, neutron induced microscopic radiography. The nucleation of graphite in cold-rolled Fe-0.5%C-1.0%Si-0.47%Mn-0.005%B steel is formed at void which is formed at pearlite/pearlite boundary by cold rolling. But the effect of cold rolling on graphitization in boron addition steel is more effective than that of no boron addition steel due to segregation of BN at void in boron addition steel.

  • PDF

The Study on the Separation of the Subsidiary Elements in Iron and Steel by Using Ion Exchangers (I). The Separation of Cations (이온교환수지에 의한 철 및 강의 분석에 관한 연구 (제1보) 양이온 성분의 분리)

  • Lee, Byoung-Cho;Park, Myon-Yong;Park, Kee-Chae
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.346-352
    • /
    • 1973
  • The quantitative separations of a mixture containing equal amounts of each cation such as Mn(Ⅱ), Cr(Ⅲ), V(Ⅴ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), and Fe(Ⅲ) are carried out by the elution through $35cm{\times}3.14cm^2$ column of cation exchange resin, $Dowex 50w{\times}12$. The eluents are a mixture of 0.6 M sodium chloride and 0.1 M sodium tartrate (pH = 2.00 and 4.50) for Fe(Ⅲ), V(Ⅴ), Cu(Ⅱ), Ni(Ⅱ) and Co(Ⅱ), and a mixture of 3 M sodium chloride and 0.1 M sodium tartrate (pH = 4.50) or a mixture of 0.7 M sodium chloride and 0.5 M sodium oxalate (pH = 4.50 and 5.00) for Mn(Ⅱ) and Cr(Ⅲ). The subsidiary cations in a standard iron mixture such as V(Ⅴ), Cu(Ⅱ), Ni(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) are separated together from the large amount of Fe(Ⅲ) through $15cm{\times}3.14cm^2$ column of the resin, $Dowex 1{\times}8$, by elution with the eluent of 4.0 M hydrochloric acid. A small amount of Fe(Ⅲ), however, is eluted together with Cu(Ⅱ). V(Ⅴ), Ni(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) eluted together are separated quantitatively through $10cm{\times}3.14cm^2$ column of the resin,$Dowex 50w{\times}12$. Cu (Ⅱ) and a small amount of Fe(Ⅲ) are separated quantitatively through $10cm{\times}3.14cm^2$ column of the resin, $Dowex 50w{\times}12$, by the elution with a mixture of 0.6 M sodium chloride and 0.1 M sodium tartrate (pH = 2.00 and 4.50) as an eluent. By the conditions obtained in the separations of the standard iron mixture, Fe(Ⅲ) and all of the subsidiary cations in steel are quantitatively separated.

  • PDF

A Study on the Characteristics of Dustfall in Pusan (부산지역 대기 중 강하분진의 특성에 관한 연구)

  • Kim, Eun-Kyoung;Ok, Gon;Kim, Young-Seup
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.463-471
    • /
    • 1996
  • In order to investigate the characteristics of dustfall at eight sites in Pusan, the dustfal1 samples were collected with dust jar method from May to September 1995, and Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were analyzed, The main results of this study are summarized as follows; 1) The total mean value of dustfall was 11.30 ton/$^{\circ}C$/month. 2) The maximum and minimum values of dustfall were industrial and resident area respectively, 3) The dustfall showed the general trend in order as May>Jun>September>July. 4) The general trend of the heavymetals in dustfall was in order as Fe>Cu>Zn>Pb>Ni>Cd>Cr>Mn any the concentrations of heavymetals had different tendencies according to sources of Pollutant meterials. 5) The Concentrations of Fe, Cu, Pb, Ni, Cd and Cr in industrial area and Mn, Pb and Zn in traffic area were high. The concentrations of heavymetals in residence area and unpolluted area were generally low. 6) Cr, Cu and Cd were influenced by the steel industry and the metal products plant and Zn was influenced by the automobiles. Mn, Fe and Ni were influenced by the soil as wet as artificial outlet. 7) The correlation between the total amount of dustfall and the concentrations of the heavymetals by month was high and the correlation between the heavymetals of the same origin was high.

  • PDF

Structural and Electrical Properties of the Y-Cr Bilayer Deposited on Fe-l6Cr Ferritic Alloy after Heat Treatment at 800℃ (Fe-l6Cr 페라이틱 합금에 증착된 Y-Cr 이층 박막의 800℃ 열처리 후의 구조 및 전기적 특성)

  • Lee, Yong-Jin;Kim, Sang-Woo;Kim, Gyeung-Ho;Lee, Jong-Ho;Ahn, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.36-42
    • /
    • 2003
  • The oxidation behaviors of Y-Cr bilayer deposited on ferritic steel by magnetron-sputtering for application of the Fe-Cr alloys as interconnectors of planar-type solid oxide fuel cells (SOFCs) were studied. After oxidation at $800^{\circ}C$ for 40 hours, the major phase of $Y_2$$O_3$and the minor phase of $YCrO_3$, $Mn_{1.5}$ $Cr_{1.5}$ $O_4$and Cr$_2$SiO$_4$were formed in the Y/Cr bilayered samples, while the major phase of Cr$_2$O$_3$and the minor phase of $Y_2$$O_3$were formed as the major phase in the Cr/Y bilayered samples. The Log(ASR/T) that expresses electric resistance of the Y/Cr coated specimen with nonconducting $_Y2$$O_3$oxide showed high value of -2.80 Ω$\textrm{cm}^2$$K^{-1}$ / and that of the Cr/Y coated specimen with conducting $Cr_2$$O_3$oxide appeared to be -4.11 Ω$\textrm{cm}^2$$^{K}$ . The electric resistance of the Y/Cr coated specimen was largely increased due to the formation of high resistance oxide scales. However, the Cr/Y coated specimen did not show any increase in the electric resistance and had the long-term stability of oxidation because there was no formation of the secondary phases with low conductivity.

Heavy Metal Concentrations in the Soil of Yoecheon Industrialized Complex Area (여천공단 주변 토양의 중금속함량에 관한 연구)

  • 윤연흠;박돈희;김용웅;조완현;박천영;윤정한
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.379-389
    • /
    • 2000
  • This study was focused on the investigation for the heavy metal contamination of soils derived from Yoecheon Industrial Complex in Chonnam Province. Total 201 soil samples including farmland, paddy, forest and playground soils were collected, extracted by 0.1N HCl and analyzed for Cd, Cu, Cr, Fe, Mn and Zn using AAS. Most pH values in soils were weak acidic ranges of 4-6, while some of them were over 8.0. Concentrations of Cd, Cu, Fe and Zn in the soils tend to be relatively high around the Au-Ag mine area, railroad stations and oil station, however, those of Cr, Mn and Pb show high at the northside of Pohang Steel Co (POSCO). Cadmium-Zn couples, and Cd-Zn and Zn-Cr couples have relatively good correlations in the farmland soils and paddy soils, respectively. Concentrations of Cd, Fe and Zn with depth tend to be higher in the top soils than in the bottom soils, but those of Cu and Pb do not show regular variations with depth.

  • PDF

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

High-Temperature Oxidation Kinetics and Scales Formed on P122 Steel Welds in Air (P122강 용접부의 대기중 고온산화 부식속도와 스케일 분석)

  • Bak, Sang-Hwan;Lee, Dong-Bok
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.699-707
    • /
    • 2011
  • P122 steel, with a composition of Fe-10.57%Cr-1.79%W-0.96Cu-0.59Mn was arc-welded and oxidized between $600^{\circ}C$ and $800^{\circ}C$ in air for up to 6 months. The oxidation rates increased in the order of the base metal, weld metal, and heat-affected zone (HAZ), depending on the microstructure. The scale morphologies of the base metal, weld metal, and HAZ were similar because it was determined mainly by the alloy chemistry. The scale consisted primarily of a thin $Fe_2O_3$ layer at $600^{\circ}C$ and $700^{\circ}C$ and an outer $Fe_2O_3$ layer and an inner ($Fe_2O_3$, $FeCr_2O_4$)-mixed layer at $800^{\circ}C$. The microstructural changes resulting from heating between $600^{\circ}C$ and $800^{\circ}C$ coarsened the carbide precipitates, secondary Laves phases, and subgrain boundaries in the matrix, resulting in softening of the base metal, weld metal, and HAZ.

Characteristics of Heavy Metal Pollution in Contaminated Roadside Sediments in Jeonju City, Korea (전주시 도로변 퇴적물의 중금속 오염 특성)

  • Cho, Ktu-Seong
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.711-720
    • /
    • 2003
  • To study characteristics of the heavy metal pollution, sediment samples were collected at 67 sites on the roadside of Jeonju city during summer and winter, 2002. The total concentration of metals including Cd, Co, Cr, Cu, Ni, Pb, Zn, and Mn in the sediment samples were determined. The results indicate that the roadside sediments in Jeonju city have lower (1/2 to 1/7 times) concentrations of Zn, Cu, Pb and Cd than the metal concentrations previously reported for roadside soil, dust and sewage sludges in Seoul. However, the metal concentrations are higher than environmental quality criteria in soil suggested from several countries, and Zn, Cu, Pb and Cd contents are usually 2-7 times higher than the world average contents of the metals in natural soil. Although pollution index and concentrations of Cr, Ni, Pb and Zn in the roadside sediments at industrial area were usually higher than those of downtown and residential area, the metal having small vehicle- and steel-related industries had high concentrations of metals. The results of chemical partitioning analysis showed that Pb, Zn and Mn are mainly associated with carbonate/adsorbed and Fe-Mn oxide phases but that Cu is largely associated with the organic and sulfide fractions. It thus indicates that both large and small (vehicle- and steel-related) industries are main sources of heavy metal contamination. Due to high solubility of the carbonate phases by natural leaching episodes, the carbonate/adsorbed Cd, Co, Ni, Pb, Zn and Mn in the roadside sediments may serve as a potential source of contamination.

A study on Airborne Concentration of Welding Fumes and Metals in Confined Spaces of a Shipyard (모조선소의 밀폐된 작업장에서의 공기중 용접흄 및 중금속 농도에 관한 조사 연구)

  • Kwag, Young-Soon;Paik, Nam-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.113-131
    • /
    • 1997
  • This study was performed to evaluate the exposure levels of worker exposed to welding fume and metals in confined spaces of a shipyard. The airborne concentration of welding fumes and metal elements in confined spaces were compared with those in open working areas. Results of the study were as follows. 1. The geometric mean of welding fume concentration in a confined space was $16.6mg/m^3$, which contained $3.9mg/m^3$ Fe, $1.2mg/m^3$ Mg, $0.8mg/m^3$ Zn, $0.008mg/m^3$ Cu, $0.008mg/m^3$ Pb, $0.005mg/m^3$ Ni, $0.003mg/m^3$ Cr, $0.003mg/m^3$ Cd. The geometric mean of welding fume concentration in open working areas was $5.2mg/m^3$, which contained $1.1mg/m^3$ Fe, $0.3mg/m^3$ Mg, $0.3mg/m^3$ Zn, $0.004mg/m^3$ Cu, $0.008mg/m^3$ Pb, $0.005mg/m^3$ Ni, $0.003mg/m^3$ Cr, $0.0003mg/m^3$ Cd. The geometric mean of welding fume concentration in confined spaces was 3,2 times higher than that in open working areas. The geometric mean concentrations of such metals as Fe, Mg, Zn, or Cu within fume in confined spaces were 2-4 times higher than those in open working areas, while little difference made such metals as Pb, Ni, Cr, Cd. 2. In 32 samples out of a total of 39 samples (82.1%) collected in confined spaces, the concentrations of welding fume exceeded TLV. while so did 19 samples out of 33 samples (57.6%) in open working areas. As for the concentrations of metals in welding flume from confined spaces, Fe exceeded TLV in 14 out of a total of 38 samples (36.8%), Mn exceeded TLV in 23 out of a total of 38 samples (60.5%). As for the concentration of metals in welding fume from open working areas, Fe exceeded TLV in 3 out of a total of 34 samples (8.8%), Mn exceeded TLV in 6 out of a total of 34 samples (17.6%). Considering additive effect among metals, in 31 out of a total of 39 samples (79.5%) collected in confined spaces, the concentrations of welding fume exceeded TLV, while so did 14 out of 38 samples (55.6%) in open working areas. 3. In respect of base metal and welding type the concentration of total welding fume by $CO_2$ gas W./mild steel was the highest, followed by semiauto MMA/mild steel, then followed by TIG or $CO_2$ gas W./stainless steel. ; as for concentration of metal within fume, a decreasing order was Fe, Zn, Mn, and Pb in $CO_2$ gas W./mild steel and semiauto MMA/mild steel, but Fe, Mn, Cr, and Ni in TIG or $CO_2$ gas W./stainless steel. 4. In case of welding base metal covered by paint, contents of Zn within red paint chip and within gray paint chip were 14.0% and 0.08% respectively, which showed a little difference, while the airborne concentrations of Zn within fume during welding base metal covered red paint and gray paint were $1.351mg/m^3$ and $1.018mg/m^3$ respectively, which showed little difference. As for Pb, contents of red paint chip and gray paint chip were 0.14% and 0.08% respectively, and the airborne concentrations within fume during welding base metal covered red paint and gray paint were $0.009mg/m^3$ and $0.007mg/m^3$ respectively, both of which showed little difference.

  • PDF

Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume (용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Park, Wha-Me;Kim, So-Jin;Lee, Young-Ja;Chang, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF