• 제목/요약/키워드: Fe nanoparticle

검색결과 156건 처리시간 0.036초

뫼스바우어 분광기법을 이용한 Fe-N 나노입자의 자기특성연구 (Study of Magnetic Property of Fe-N Nanoparticle Using Mössbauer Spectroscopy)

  • 오세진
    • 한국자기학회지
    • /
    • 제17권2호
    • /
    • pp.76-80
    • /
    • 2007
  • 화학기상응축공정법으로 세 가지 분해온도에서 제조된 나노 Fe-N 시료들을 뫼스바우어 분광기, XRD와 BET를 이용하여 자기적 특성의 변화를 연구하였다. 분해온도가 낮을수록 ${\gamma}'-Fe_4N$의 형성이 용이하였으며, 중간온도에서의 ${\epsilon}-Fe_{2.12}N$을 거쳐 높은 분해온도에서는 ${\gamma}-Fe$가 주로 형성되었다. 높은 분해온도에서는 Fe와 N이 서로 잘 결합되지 못하였는데, 이는 Fe와 N을 결합시키기 위해서는 분해온도를 낮게 하는 것이 바람직하다는 것을 의미한다.

은 나노입자를 함유하는 카르복시메틸 셀룰로오스 하이드로겔 제조 (Formation of Carboxymethyl Cellulose Hydrogel Containing Silver Nanoparticle)

  • 박종석;광가;권희정;임윤묵;노영창
    • 방사선산업학회지
    • /
    • 제4권4호
    • /
    • pp.353-357
    • /
    • 2010
  • Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using $AgNO_3$ aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

Superparamagnetic Gd- and Mn-substituted Magnetite Fluids Applied as MRI Contrast Agents

  • Kim, Jong-Hee;Lee, Chang-Hyun;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1305-1308
    • /
    • 2009
  • The experimental particle samples included ($Mn_{0.1}Fe_{0.9}$)O-$Fe_2O_3$ and FeO-($Gd_{0.1}Fe_{0.9}$)$_2O_3$ with $Mn^{2+}\;and\;Gd^{3+}$ substitutions in inverse spinel $Fe_3O_4$. A lecithin surfactant was adsorbed onto the magnetic particles by ultrasonication. The samples prepared showed excellent dispersibility at the mean size of 13 nm; their saturation magnetization values were 63 emu/g for the bare and Mn-substituted magnetites, and 56 emu/g for the Gd-substituted magnetite. The crystal structure of the substituted magnetites was very similar to that of the bare magnetite, due to a small amount of 0.1 mole fraction substituted in synthesizing the magnetite. The magnetite fluids, according to T2-weighted MR images, effectively diminished the signal intensity in the liver and spleen of Sprague-Dawley rats.

Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications

  • Tomitaka, Asahi;Jeun, Min-Hong;Bae, Seong-Tae;Takemura, Yasushi
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.164-168
    • /
    • 2011
  • Magnetic nanoparticles can potentially be used in drug delivery systems and for hyperthermia therapy. The applicability of $Fe_3O_4$, $CoFe_2O_4$, $MgFe_2O_4$, and $NiFe_2O_4$ nanoparticles for the same was studied by evaluating their magnetization, thermal efficiency, and biocompatibility. $Fe_3O_4$ and $CoFe_2O_4$ nanoparticles exhibited large magnetization. $Fe_3O_4$ and $NiFe_2O_4$ nanoparticles exhibited large induction heating. $MgFe_2O_4$ nanoparticles exhibited low magnetization compared to the other nanoparticles. $NiFe_2O_4$ nanoparticles were found to be cytotoxic, whereas the other nanoparticles were not cytotoxic. This study indicates that $Fe_3O_4$ nanoparticles could be the most suitable ones for hyperthermia therapy.