BS14

Studying of the Influence of γ Radiation on Magnetic Properties of Sr_{0.8}La_{0.2}O.6Fe_{1.7}Co_{0.3}O₃ Ferrite Magnetic Materials

N. M. Giao¹, D. T. K. Dung^{1*}, N. L. T. Trang¹, C. T. Thuy¹, L. H. Phúc¹,

H. T. T. Ha, T. K. An², and T. V. Hung²

¹Hochiminh city Institute of Physics, Vietnam ²Radiation Applying and Researching Center

*Corresponding author: Author2 D.T.K.Dung , e-mail: dtkdung@vast-hcm.ac.vn $\ensuremath{$

Some previous researches had proved that magnetic properties are unchangeable under affecting of radiating (reach 700Mrad of doses) [1-2]. For reexamining the influence of gamma radiation on the $Sr_{0.8}La_{0.2}O.6Fe_{1.7}Co_{0.3}O_3$ ferrite magnetic, we performed the study following: The Co⁶⁰ gamma radiation with 1.33 and 1.17 MeV Energy was emitted on permanent magnet $Sr_{0.8}La_{0.2}O.6Fe_{1.7}Co_{0.3}O_3$ with doses in 500-2000kGy. Analyzing magnetic properties of this system before and after emitting by hysteresisgraph AMH 50-20 was showed the change of (B-H) loop is insignificant. Our work reaffirmed the results of [1-2].

REFERENCES

R.S. Gao et al. / Journal of Magnetism and Magnetic Materials 302 (2006) 156–159.
 J. Alderman, P.K. Job and J. Puhl, *Nucl. Instrum. Methods A* 481 (2002), p. 9.

BS15

Room Temperature Magnetic Properties of Fe-doped CeO₂ Nanoparticle Prepared by a Simple Method

Sumalin Phokha^{1*} and Santi Maensiri^{1,2}

¹Small & Strong Material Group (SSMG), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand.
²Intergrated Nanotechnology Research Center (INRC), Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand.
*Corresponding author: Sumalin Phokha, e-mail: kaekip@hotmail.com

In this paper, we report room temperature magnetic properties of $Ce_{0.97}Fe_{0.03}O_2$ nanoparticles by a simple method using cerium (III) nitrate, Iron (III) nitrate and chitosan solution. The precursors were calcined in air at 400, 500, 600 and 700°C for 2 h to obtain nanoparticles. The synthesized samples were characterized using Thermogravimetric Differential Analysis (TG-DTA), X-ray diffractometer (XRD), UV-Visible spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL), Transmission electron microscopy (TEM) and Vibrating sample magnetometry (VSM). Results from XRD indicated that the synthesized $Ce_{0.97}Fe_{0.03}O_2$ nanoparticles have the cubic structure no change in the structure affected by Fe substitution. Room temperature magnetization results revealed a ferromagnetic behavior for the $Ce_{0.97}Fe_{0.03}O_2$ samples. The origin of the room temperature ferromagnetism in this Fe-doped CeO₂ system is discussed.