단 신

전기방사법으로 제조한 NiFe2O4 나노 구조의 자기적 성질

신임성·홍성철·이명순·김 돈*

부경대학교 화학과 (2008. 12. 22 접수)

Magnetic Properties of NiFe₂O₄ Nanostructure which Prepared by Electrospinning Method

Imsung Shin, Seong-Cheol Hong, Myeongsoon Lee, and Don Kim*

Chemistry Department, Pukyong National University, Busan 608-737, Korea (Received December 22, 2008)

주제어: 전기방사, 자성나노입자, 초상자성, 철산화물 **Keywords:** Electrospinning, Magnetic nanoparticle, Superparamagnetism, Ferrite

자성 나노입자의 크기는 재료의 물성을 결정 하는 매우 중요한 요소이므로 여러 연구자들은 입자들의 크기를 조절하기 위하여 유기금속 전 구체의 열적, 음파 화학적 분해, 고온에서의 금 속 이온들의 환원, 그리고 micelle 내에서의 환원 등을 포함한 다양한 합성방법들을 이용하고 있 다.¹⁻³ 특히 자성 나노입자는 Au, Ag 및 Pt 등의 비 자성 나노입자들과 달리 입자 간의 자기적 인력 의 작용으로 뭉쳐져서 나노규모 이상의 큰 입자 로 쉽게 침전된다. 이러한 뭉침 현상을 막기 위 해서 적절한 첨가제(분산제)를 사용하는 등의 방 법으로 반응공간의 크기를 축소하여 자성 나노 입자의 성장을 제한하는 방법을 사용해야 한 다.12 자성 나노입자들은 특정한 크기(자철광의 경우 약 20 nm) 이하가 되면 상온부근에서 보자 력(coercive force, H_o)이 거의 무시 될 수 있는 수 준으로 감소되는 초상자성(superparamagnetic)을 가진다. 이러한 조건에서는 자성 입자간 상호 자 기적 인력이 작용하지 않아 입자들을 쉽게 균일 하게 분산 시킬 수 있다.14 초상자성은 상자성과 거의 유사한 자기적 거동을 보이는 것을 말하며, 나노 크기의 자성 입자들은 blocking temperature($T_{\rm B}$) 이상에서 초상자성체가 된다. 상온부근에서 초 상자성을 가지는 나노입자들은 자기조영술, 약 물전달 나노용기 등의 의학적인 용도가 있으나⁵, 상당한 크기의 H.를 가져야 가능한 자기정보 저 장물질로서의 직접 사용은 불가하다. 그러나 큰 H. 값을 가진 입자들은 상호 자기적 인력으로 인 하여 스스로 더욱 큰 입자들을 형성하여 고밀도 정보기록 매질로서 한계를 갖게 된다.⁴⁶ 따라서 상온에서 상당한 크기의 H.를 가지도록 자성 나 노입자들을 합성하고 이들이 상호작용으로 큰 입자를 형성하지 못하도록 균일하게 배열하는 것은 고밀도 정보저장매체 개발을 위해 해결하 여야 할 문제이다.

전기방사법(electrospinning)은 100 nm - 500 nm 의 직경을 가지는 고분자섬유를 제작하는 데 아 주 효과적인 방법으로 섬유공업에서 쓰이는 기 술이나,⁷ 최근 수년간 다양한 금속 나노입자들을 함유한 100 nm 이하의 직경을 가진 나노섬유 제 조에도 적용된 사례들이 학술지에 보고되고 있 다.⁸⁻¹² 이 방법은 전기방사된 고분자에 혼합된 용 매의 증발과 동시에 나노섬유가 형성되고, 이후 금속전구체들이 분해되어 금속성분을 포함한 나노입자를 형성하게 된다. 이때, 방사된 나노섬 유의 외경이 나노입자의 2차원 및 3차원적인 확 장을 제한하는 형를 역할을 한다. 즉 전기방사법 은 연속적으로 선형 배열된 나노입자를 생산하 는 좋은 방법이다.

본 연구에서는 자성 나노입자인 스피넬 구조의 NiFe₂O₄를 유기금속(metal alkoxide: Fe(OOC-H₁₅) (OC₃H₇)₂ Ni(OOC₇H₁₅)(OC₃H₇))화합물을 포함한 고분자, polyvinyl(pyrrolidone) (PVP), 용액을 Si(100) 표면에 전기방사한 후 가수분해 및 고온 열처리 방법으로 Si기판 표면에 배열하고, 가수 분해 및 열처리조건에 따른 입자들의 구조 및 분 포와 이들의 자기적 특성을 조사해 보았다.

Junsei Chemical사의 n,n-dimethylformamide (DMF: HCON(CH₃)₂, 99.5 %)와 Havman사의 무 수에탄올(C₂H₅OH, 99.9 %) 그리고 전기방사 및 나노입자의 습식합성의 나노 형틀로 널리 쓰이 는¹² 고분자인 PVP(Aldrich, Mw = 1300000 D)를 방사용매로 사용하였다. DMF와 에탄올은 부피 비가 1:1이 되게 하였고, PVP는 질량비로 10 % 가 되게 하였다. 유기금속 전구체로 nickel(II) ethylhexano-isopropoxide(5 % w/v in isopropanol, Ni(OOCC₇H₁₅)(OC₅H₇), Alfa Aesar) 및 iron(III) ethylhexano-isopropoxide(10 % w/v in isopropanol, Fe(OOCC:H₁₅)(OC₃H₇)₂, Alfa Aesar)를 사용하여, 방사용매에 투입되는 두 물질의 부피를 10 mL로 제한하면서 조성비 Ni: Fe=1:2가 되도록 하였다. 이 혼합물질들은 환류장치를 이용하여 용매의 중발을 최소화하면서 2 시간동안 350 K에서 교 반 혼합되었다.

혼합용액은 주사기펌프(KDS model 200 series) 를 이용하여 0.35 mL/min로 공급하였고, NanoNC 사의 고전압공급 장치(V-EXT)로 방사전압을 15 kV로 조정하였으며 선형성이 향상된 나노섬유 를 얻기 위하여 분당 약 200 회로 회전하는 원통 에 1 cm x 1 cm 크기의 *n*-type Si wafer를 붙인 회 전식 collector를 제작하여 사용하였다. 방사거리 는 15 cm로 고정하였고, 방사는 glove box내에서 상대습도 20 % 이하를 유지하도록 하여 상온에 서 수행하였다. 방사에 사용된 주사바늘(23 gauge) 은 방사에 중요한 역할을 하는 Tayler cone을 원 활하게 형성할 수 있도록 평탄하게 절단하여 사 용하였다.

방사된 섬유에 포함된 금속전구체들에 대한 가수분해 효과를 확인하기 위하여 상대습도 ~ 100 % 및 상대습도 ~20 % 하에 방사된 나노섬유 를 24 시간 방치하여 가수분해하였고, 산화력의 차이에 따른 열처리효과를 확인하기 위하여 99.9 %의 질소가스와 대기 조건에서 973 K에서 각각 3 시간 동안 열처리하였다. Thermo gravimetric analysis (TGA) 분석에 의하면 973 K는 금속이온 들을 금속산화물로 산화시키기에 충분한 온도 였다. 합성된 나노구조물의 표면형상과 직경은 JEOL사의 전계방출-주사전자현미경(JSM-6700F, field emission-scanning electron microscope, FE-SEM) 및 MEIJI사의 광학현미경(MA 326. microscope)으로 확인하였고, 결정구조는 Philips사의 X'Pert MPD system X-선 회절기(x-ray diffractometer, XRD, Cu-Ka 선)로 확인하였다. 그리고 Quantum Design사의 SQUID 자화율측정기(MPMS/ XL7)를 이용하여 제조된 자성 나노섬유의 자기 적 특성을 조사하였다. 시료들의 약칭과 합성조 건 및 특성을 Table 1에 수록하였다. 특별히 측정 온도를 명기하지 않은 경우에는 상온에서 측정 한 것이다.

Fig. 1는 Si wafer에 방사된 MOR1의 FE-SEM 사진이며 inset은 광학현미경 사진이다. MOR1은 전기방사 후 상대습도 ~20 %에서 24 시간 동안

<i>Table 1.</i> List of preparation condition and some physical properties the highest temperature of the deviation between zero field controls.	ties of samples. The 'highest ooling and field cooling curv	temperature' in the table ves.
Relative Humidity	Blocking Temperature	Highest Temperature

Sample	Relative Humidity (%)	Gas flow at 927 K	Blocking Temperature (K)	Highest Temperature (K)
MOR 1	20	-	-	-
MOR1A	20	Ambient Air	250	250
MOR1B	20	N_2	330	330
MOR2	100	-		
MOR2A	100	Ambient Air	230	340
MOR2B	100	N_2	230	330

Journal of the Korean Chemical Society

Fig. 1. Field emission scanning electron microscope image(FE-SEM) image of polymer-organometallic nanofiber(MOR1), which prepared by electrospinning and aged under \sim 20% relative humidity at room temperature. Inset is optical microscope image of MOR1.

가수분해한 것이다. 두 사진에서 보여주는 것처 럼 명확한 선형성을 가진 매끈한 선(wire)이 방 사되었으며, 선의 표면에는 방사 혼합물인 금속 전구체들의 가수분해로 인한 것으로 보이는 10 nm 크기 이하의 입자들이 불균일하게 붙어있다. 사진에서 보이는 선의 굵기는 약 200 nm이다. 선 의 굵기는 방사전압이 10, 15 및 25 kV로 증가함 에 따라 직경이 대략 150, 200 및 250 nm로 증가 하였다.

Fig. 2의 (a)는 MOR1을 대기 중에서 973 K로 3 시간동안 열처리한 FE-SEM 사진 (MOR1A)이 고, Fig. 2의 (b)는 질소 중에서 동일하게 열처리 한 FE-SEM 사진(MOR1B)이다. 사진에서 보는 바와 같이 상대습도 20 %에서 가수분해 한 방사 섬유를 산소 중에서 열처리하면 방사된 고분자/ 금속이온 나노선에서 유기성분들은 열 분해되 어 제거되고 약 50 nm 정도의 크기로 뭉쳐진 금 속성분 입자들이 선형으로 배열된 모양으로 남 는다. 또 질소 분위기에서 열처리된 시료는 입자 의 크기가 80 nm 정도로 더 크게 자라서 배열되 는 것을 확인 할 수 있다. 뒷부분에서 언급될 x-선 회절분석에 의하면 방사혼합물은 이 열처리 조건에서 스피넬 구조의 NiFe2O4를 형성하므로, Fig. 2에서 보이는 입자들은 NiFe₂O₄의 성분을 가 진 자성 나노입자이다. 따라서 유기금속 전구체 들과 PVP를 포함한 혼합물들을 전기방사한 후 적절한 조건에서 후처리를 거치면 나노규모의 NiFe2O1 자성입자들을 1차원으로 배열함과 동시

Fig. 2. FE-SEM images of MOR1A and MOR1B which aged in 20% relative humidity for 24 hr and then sintered at 973 K for 3 hr in (a) air and (b) nitrogen, respectively.

에 그들의 크기 조절이 가능함을 알 수 있다.

그림은 생략 하였으나 현미경으로 관측한 결 과에 의하면 방사된 나노섬유를 가수분해 시킬 때 상대습도 45 %까지의 조건에서는 방사된 섬 유표면에서 뚜렷한 wetting 현상이 나타나지 않 았으나, 포화수증기압 부근에서 가수분해 한 시 료(MOR2)들은 심한 wetting 현상을 보여 방사된 나노선들의 형상이 뚜렷이 구분되지 않았다. MOR2를 대기 (MOR2A) 와 질소(MOR2B) 중에 서 각각 3 시간동안 973 K로 각각 열처리한 시료 에서는 다양한 모양을 가진 입자들이 collector로 사용한 Si wafer 표면에 무질서하게 배열된 것을 확인할 수 있었으며 입자들의 크기 및 분포는 실 험적으로 조절할 수 없었다.

Fig. 3은 방사된 나노선들을 Sī기판에 충분히 모으고 20 %(MOR1) 및 100 %(MOR2)의 상대습 도에서 24 시간 가수분해 한 후 대기(MOR1A, MOR2A) 및 질소분위기(MOR1B, MOR2B) 하에 서, 973 K에서 3 시간 동안 열처리 한 시료의 x-선 회절선이다. Fig. 3에서 보는 바와 같이 다소

Fig. 3. Powder x-ray diffraction patterns of MOR1A, MOR1B, MOR2A and MOR2B. Main peaks of the patterns could be indexed as spinel NiFe₂O₄.

의 노이즈를 가지고 있으나, 주 peak 들은 자성을 가진 스피넬 구조인 NiFe₂Oi에 해당하는 peak (JCPDS # 10-0325)으로 확인되었다. 또한 질소 중에서 열처리한 경우에도 거의 동일한 형태의 주 peak을 가진 pattem을 얻을 수 있어서 열처리 하는 동안 산소의 존재 유(대기 중) 무(질소 흐 름)와는 상관없이 스피넬 NiFe₂O₄ 상이 주로 생 성됨을 확인하였다.

Fig. 4는 (a) MOR1A, (b) MOR1B, (c) MOR2A 및 (d) MOR2B의 온도변화에 따른 magnetic moment(M)를 나타낸 것이다. 자기장(200 Oe)을 걸어준 상태(FC) 및 자기장을 걸어주지 않은 상 태(ZFC)에서 상온으로부터 10 K까지 냉각한 후 온도를 증가시키면서 측정한 값으로, 측정된 M은 질량보정을 하지 않은 값이다. 철산화물계 자 성입자는 크기가 ~20 nm 이하로 작아지면 상온 부근 이하에서 T_{B} 를 가지고 T_{B} 이상에서는 magnetocrystalline anisotropy ($E_{\rm X}$)보다 thermal activation energy ($k_{\rm B}$ T)가 더 크게 되어 초상자성을 가지게 된다.^{2,13-15} $T_{\rm B}$ 는 ZFC곡선에서 최대값에 해당하 는 온도이고 자성입자들의 평균부피와 다음과 같은 관계를 가진다:² $T_{\rm B}$ = VK / $25k_{\rm B}$ (단 K =

Fig. 4. Temperature dependence of magnetic moment of (a) MOR1A, (b) MOR1B, (c) MOR2A and (d) MOR2B with applied field of 200 Oe. The arrows indicate the highest temperature(T_{irr}) of the deviation between zero field cooling(ZFC) and field cooling(FC) curves.

magnetic anisotropy constant, V = volume of particle 및 $k_{\rm B} =$ Boltzmann constant). 또한 ZFC와 FC 간의 불일치가 시작되는 가장 높은 온도(T_{ur})는 크기 가 가장 큰 자성입자들에 의해 결정되는 온도이 며 입자의 크기가 클수록 높은 온도를 가진다.¹⁵ 따라서 이들 두 온도 ($T_{\rm B}$ 및 $T_{\rm irr}$) 간의 차이는 자 성 나노입자들의 크기균일성과 연관되어 두 온 도가 일치하면 매우 균일한 입자들의 집합이라 할 수 있고, 두 온도의 차이가 크면 입자들이 균 일하지 않다고 할 수 있다. 또한 $T_{\rm irr}$ 및 $T_{\rm B}$ 이하의 온도에서는 큰 $H_{\rm c}$ 값을 가져 자기정보 기록이 가 능한 상태가 되고 이들 온도 이상에서는 작은 $H_{\rm c}$ 값을 가져 실질적으로 상자성의 특성을 가지는 초상자성 상태가 된다.

MOR1A는 Fig. 4 a)에서 T_B 및 T_m가 250 K 부 근이고, MOR1B는 Fig. 4 b)에서 T_B 및 T_{in}가 330 K 부근으로 각각에서 두 온도는 상호 접근하는 것으로 확인된다. 이는 낮은 상대습도 (20%)에 서 가수분해한 경우에는 크기분포가 균일한 자 성 나노입자들이 합성된다는 것을 보여준다. 이 들 두 시료가 크기만 다른 NiFe2O4 나노입자들로 구성된 것으로 추정하면 앞에서 언급한 T_B와 자성 입자간의 부피관계로부터 MORIA의 T_B(T_{BMORIA}) 와 MOR1B의 $T_{\rm B}(T_{\rm BMOR1B})$ 의 비 $(T_{\rm BMOR1A}/T_{\rm BMOR1B})$ 는 두 입자들이 가진 부피 비(F_{MORIA}/F_{MORIB})와 같아야한다. 그러나, 위 결과에서는 TBMORIA/TBMORIB =J^{*}MORLA/J^{*}MORLE가 만족되지 않는다. 또한 관측된 T_B(250 K 및 330 K)는 FE-SEM으로 확인한 입자 들의 크기(50 및 80 nm) 보다 작은 20 nm 이하의 크기를 가진 입자 및 20 nm정도의 크기를 가진 입자들에서 예상되는 값들이다.¹⁵ 따라서 FE-SEM 사진에서 관측되는 입자들은 분명하게 구분되 지는 않지만 주로 20 nm 내외 및 그 이하의 크기 를 가진 입자들로 구성된 것으로 판단된다. 또한 자기이력곡선에서 측정한 Hc 값은 300 K에서 MOR1B (120 Oe)가 MOR1A (80 Oe)보다 50 % 정도 더 큰 값이므로, 좀 더 큰 입자들로 구성된 MOR1B가 상온부근에서 자기정보 저장에 더 유 리하다고 볼 수 있다.

포화상대습도에서 가수분해된 시료인 MOR2A 및 MOR2B (*Fig.* 4의 c)와 d))에서는 MOR1A 및 MOR1B와는 달리, 물음표로 표시한 것처럼 특

2009, Vol. 53, No. 2

성은도 결정에 약간의 어려움이 있지만, T_B 와 T_{In} 간의 차이를 명확히 구분할 수 있고 두 온도 간에 상당한 차이를 가져 입자들의 분포가 불균 일하다는 것을 예상할 수 있다. 즉 상대습도 100 %에서 가수분해하고 대기 및 질소 분위기에서 열처리한 시료들은 230 K부근에서 T_B를 가지는 입자들과 350 K 부근에서 T_{In}를 가지는 큰 입자 들이 혼합된 것으로 해석된다. 그러나, 자성 입 자들을 이용한 정보 저장은 모든 구성입자들이 상온에서 자화가 가능한 상태가 유리할 것이므 로 MOR2A 및 MOR2B와 같이 입자들의 크기분 포가 넓고 T_B가 상온이하인 경우에는 적용이 불 리 할 것으로 판단된다.

유기금속전구체(Ni-OR, Fe-OR)와 고분자(PVP) 의 혼합물을 환경이 조절된 상태에서 전기방사 하여 나노섬유로 만들고 이 나노섬유를 상대습 도가 조절된 상태에서 24시간 가수분해 한 후 973 K에서 3시간동안 대기 중 혹은 질소가스 중 에서 열처리하여 NiFe,Q1 자성 나노체를 합성하 였다. 이들 중 20% 내외의 낮은 상대습도에서 가 수분해 한 후 대기 중에서 열처리된 시료들은 외 형상 약 50 nm 내외의 크기를 가지는 결정들이 방사된 나노섬유의 형태를 유지하며 얻어졌고. 동일조건 가수분해 후 짙소 분위기에서 열처리 한 시료들은 80 nm 크기로 성장한 입자들이 선 형으로 배열된 형태로 얻어져서 열처리 분위기 가 입자의 크기를 결정하는 요소임을 알았다. 질 소에서 열처리된 입자들은 상은 부근에서 blocking temperature (T_B = 330 K)를 가지고 300 K에서 120 Oe 정도의 Hc를 가져 상온에서 자기정보가 저장 되고 약간의 가열로 저장된 정보의 소거를 용어 하게 할 수 있는 독특한 저장매질의 개발에 응용 될 수 있음을 보여주었다.

이 논문은 2006학년도 부경대학교 기성회 학 술연구비에 의하여 연구되었음 (PK-2006-032)

인용문헌

- I. G. Schmid, Nanoparticles: From Theory to Application, Wiley_VCH, Weinheim, 2004.
- a) Hyeon T. Chem. Comm. 2003, 927, 934.; b) Park J.; Lee E.; Hwang N.; Hwang N. M.; Kang M.; Kim

S. C.; Hwang Y.; Park J. G.; Noh H. J.; Kim J. Y.; Park J. H.; Hyeon T. Angew. Chem. Ind. Ed. 2005, 44, 2872.

- a) Pileni M. P. Nat. Mater. 2003, 2, 145.:b) Frenz L.; Harrak A. E.; Pauly M.; Begin-Colin S.; Griffiths A. D.; Baret J. C. Angew. Chem. Ind. Ed. 2008, 47, 6817.
- Altavilla C.; Ciliberto E.; Gatteschi D.; Sangregorio C. Adv. Mater. 2005, 17, 1084.
- 5. Reiss G.; Hutten A. Nat. Mater, 2005, 4, 725.
- Cullity B. D., Introduction to Magnetic Materials, Addison-Wiley, Reading, 1972.
- Teo W. E.; Lim T. C.; Ma, Z. An Introduction to Electrospinning Nanofibers; World Scientific Publishing Co., Singapore, 2005.
- Greiner A.; Wendorff J. H. Angew, Chem. Ind. Ed. 2007, 46, 5670.

- a) Li, D.; Wang, Y.; Xia, Y. Nano. Lett, 2003, 3, 1167.; b) Li, D.; Xia, Y.; Wang, Y. Adv. Mater.
 2004, 16, 361.;c) Li D.; Herricks T.; Xia Y. Appl. Phys. Lett. 2003, 83, 22
- Yang D.; Yong B. L; Jiang X. Adv. Mater. 2007, 19, 3702.
- Li Z.; Zhang H.; Zheng W.; Wang W.; Huang H.; Wang C.; MacDiarmid A. G.; Wei Y. J. Am. Chem. Soc. 2008, 130, 5037.
- 12. Sun Y.; Xia Y. Science, 2002, 298, 2176.
- Wang H.; Zhang F.; Zhang W.; Wang X.; Lu Z.; Q ian Z.; Sui Y.; Dong D.; Su W. J. Cryst. Growth 2006, 293, 169.
- Chen Q; Zhang Z. J. Appl. Phys. Lett. 1998, 73, 3156.
- Kinemuchi Y.; Ishizaka K.; Suematsu H.;Jiang W; Yatsui, K. *Thin Solid Films* 2002, 407, 109.