• 제목/요약/키워드: FcBP

검색결과 8건 처리시간 0.025초

Biochemical Application of IgG Fc-Binding Peptide: From Biochip to Targeted Nano Carrier

  • Chung, Sang J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.110-111
    • /
    • 2013
  • FcBP consisting of 13 amino acids specifically binds to Immunoglobulin G Fc domain. Initially, we utilized this peptide for preparation of antibody chip as a PEG composite for enhanced solubility. After then, the peptide conjugate was immobilized on agarose resin, resulting in highly efficient affinity column for antibody purification. The efficiency was comparable to commercial Protein A column. Recently, this peptide was conjugated with cell penetrating peptide (CPP) on a backbone of GFP, affording antibody transducer, which carries antibody into live cells by simple mixing of antibody and the transducer in cell culture media. Antibody transduction into cells was monitored by live cell imaging. More recently, the FcBP was fused to ferritin cage, which consists of 24 ferritin protein molecules. The FcBP-ferritin cage showed greatly increased binding affinity to human IgG. Its binding was analyzed by QCM and SPR analysis. Finally, it was selectively delivered by Herceptin to SKBR3, a breast cancer cell, over MCF10A, non-tumorigenic cells (Fig. 1). Fig. 1. Fluorescent microscopic images of SKBR3 breast cancer cells (A~C) and MCF10A breast cells (D~F) treated with Cy3-trastuzumab/fFcBP-Pf_Fn complexes. Trastuzumab and FcBP-Pf_Fn, which were labeled with Cy3 (Cy3-trastuzumab) and fluorescein (fFcBP-Pf_Fn), respectively, selectively targeted SKBR3 over MCF10A.

  • PDF

Biochemical Application of IgG Fc-binding peptide: From Biochip to Targeted Nano Carrier

  • Chung, Sang Jeon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.84-84
    • /
    • 2013
  • FcBP consisting of 13 amino acids specifically binds to Immunoglobulin G Fc domain. Initially, we utilized this peptide for preparation of antibody chip as a PEG composite for enhanced solubility. After then, the peptide conjugate was immobilized on agarose resin, resulting in highly efficient affinity column for antibody purification. The efficiency was comparable to commercial Protein A column. Recently, this peptide was conjugated with cell penetratingpeptide (CPP) on a backbone of GFP, affording antibody transducer, which carries antibody into live cells by simple mixing of antibody and the transducer in cell culture media. Antibody transduction into cells was monitored by live cell imaging. More recently, the FcBP was fused to ferritin cage, which consists of 24 ferritin protein molecules. The FcBP-ferritin cage showed greatly increased binding affinity to human IgG. Its binding was analyzed by QCM and SPR analysis. Finally, it was selectively delivered by Herceptin to SKBR3, a breast cancer cell, over MCF10A, non-tumorigenic cells.

  • PDF

Physiological Function of NbRanBP1 in Nicotiana benthamiana

  • Cho, Hui-Kyung;Park, Jong-A;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.270-277
    • /
    • 2008
  • This study addresses the physiological functions of the Ran-binding protein homolog NbRanBP1 in Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of NbRanBP1 caused stunted growth, leaf yellowing, and abnormal leaf morphology. The NbRanBP1 gene was constitutively expressed in diverse tissues and an NbRanBP1:GFP fusion protein was primarily localized to the nuclear rim and the cytosol. BiFC analysis revealed in vivo interaction between NbRanBP1 and NbRan1 in the nuclear envelope and the cytosol. Depletion of NbRanBP1 or NbRan1 reduced nuclear accumulation of a NbBTF3:GFP marker protein. In the later stages of development, NbRanBP1 VIGS plants showed stress responses such as reduced mitochondrial membrane potential, excessive production of reactive oxygen species, and induction of defense-related genes. The molecular role of RanBP1 in plants is discussed in comparison with RanBP1 function in yeast and mammals.

Tissues Expression, Polymorphisms Identification of FcRn Gene and Its Relationship with Serum Classical Swine Fever Virus Antibody Level in Pigs

  • Liu, Yang;Wang, Chonglong;Liu, Zhengzhu;Xu, Jingen;Fu, Weixuan;Wang, Wenwen;Ding, Xiangdong;Liu, Jianfeng;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권8호
    • /
    • pp.1089-1095
    • /
    • 2012
  • Neonatal Fc receptor (FcRn) gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G (IgG) and is responsible for IgG transport and stabilization. In this report, the 8,900 bp porcine FcRn genomic DNA structure was identified and putative FcRn protein included 356 amino acids. Alignment and phylogenetic analysis of the porcine FcRn amino acid sequences with their homologies of other species showed high identity. Tissues expression of FcRn mRNA was detected by real time quantitative polymerase chain reaction (Q-PCR), the results revealed FcRn expressed widely in ten analyzed tissues. One single nucleotide polymorphism (SNP) (HQ026019:g.8526 C>T) in exon6 region of porcine FcRn gene was demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with serum Classical Swine Fever Virus antibody (anti-CSFV) concentration was performed in three pig populations including Large White, Landrace and Songliao Black pig (a Chinese indigenous breed). Our results of statistical analysis showed that the SNP had a highly significant association with the level of anti-CSFV antibody (At d 20; At d 35) in serum (p = 0.008; p = 0.0001). Investigation of expression and polymorphisms of the porcine FcRn gene will help us in further understanding the molecular basis of the antibody regulation pathway in the porcine immune response. All these results indicate that FcRn gene might be regarded as a molecular marker for genetic selection of anti-CSFV antibody level in pig disease resistance breeding programmes.

Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application

  • Soohyun Kim;Hyeon Yu;Tania Azam;Charles A. Dinarello
    • IMMUNE NETWORK
    • /
    • 제24권1호
    • /
    • pp.1.1-1.6
    • /
    • 2024
  • IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.

Characterization of Site-Specific Recombination by the Integrase MJ1 from Enterococcal Bacteriophage ${\Phi}FC1$

  • Park, Mi-Ok;Lim, Ki-Hong;Kim, Tae-Hyung;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.342-347
    • /
    • 2007
  • Bacteriophage ${\Phi}FC1$ integrase (MJ1) was previously shown to perform a site-specific recombination between a phage attachment site (attP) and a host attachment site (attB) in its host, Enterococcus faecalis, and also in a non-host bacterium, Escherichia coli. Here, we investigated biochemical features of MJ1 integrase. First, MJ1 integrase could perform in vitro recombination between attP and attB in the absence of additional factors. Second, MJ1 integrase interacted with att sites. Electrophoretic mobility shift assays and DNase I footprinting revealed that MJ1 integrase could efficiently bind to all the att sites and that MJ1 integrase recognized relatively short sequences (${\sim}50bp$) containing an overlapping region within attB and attP. These results demonstrate that MJ1 integrase indeed catalyzes an integrative recombination between attP and attB, the mechanism of which might be simple and unidirectional, as found in serine integrases.

동물 세포 내에서 MJ1 인티그라제에 의한 부위 특이적 재조합 (Site-Specific Recombination by the Integrase MJ1 on Mammalian Cell)

  • 김혜영;윤보현;장효일
    • 한국미생물·생명공학회지
    • /
    • 제39권4호
    • /
    • pp.337-344
    • /
    • 2011
  • 이전 연구에서, bacteriophage ${\Phi}FC1$이 Enterococcus faecalis KBL703에서 UV induction을 통해 분리 동정되었으며, ${\Phi}FC1$은 phage attachment site인 attP와 bacterial attachment site인 attB 사이에서 site-specific integration을 촉매하는 integrase를 가지고 있다는 것을 밝혀냈으며 이를 MJ1이라 명명하였다. 이 연구에서는 이를 바탕으로 MJ1에 의한 site-specific integration의 효율을 Escherichia coli와 NIH3T3 cell에서 확인 하기 위해 attP, attB, MJ1을 각각의 벡터에 삽입하였다. MJ1 인테그라제에 의한 재조합을 수행하기 위해서 기질 벡터 pABLP를 $DH5{\alpha}$에 형질전환시킨 후, LB 배지에서 $37^{\circ}C$ 1시간 배양한 후 암피실린(ampicillin)과 테트라싸이클린(tetracycline) 항생제 플레이트로 pGMJ1과 pABLP 같이 가지고 있는 colony 들을 선별하여, LacZ 유전자가 불활성화 된 흰색 콜로니 개수를 세고 통계를 낸 결과 integration의 frequency가 99% 이상인 것으로 나타났다. 또한, 실제로 재조합이 일어났는 지를 확인하기 위해서 콜로니 PCR을 수행하여 재조합의 산물인 attL 150 bp을 확인하였다. PCR 산물은 염기서열분석을 통해 정확한 site-specific integration이 일어났음을 확인하였다. MJ1에 의한 integration을 보이기 위해 attP와 attB를 가지고 있는 vector를 MJ1 expression vector와 함께 NIH3T3 cell에 cotransfection 했으며 GFP를 reporter로 사용해 그 activity를 관찰하였다. NIH3T3 cell에서 GFP의 발현을 형광 현미경을 통해 알아본 결과, MJ1에 의한 sitespecific integration이 다른 accessory protein의 도움 없이 일어난다는 것을 볼 수 있었다. 마찬가지 방법으로, attR과 attL 간의 excision을 GFP로 알아본 결과, GFP는 발현하지 않았으며, 이는 MJ1에 의한 excision이 일어나지 않았음을 보여주었다. 이와 같은 결과로 볼 때, MJ1의 host만이 아니라 넓은 범위안에서도 integration을 수행할 수 있다는 것을 보여주었다. 따라서 MJ1을 이용한 site-specific integration system의 개발은 gene therapy를 위한 gene delivery system의 구축에 있어서 좋은 시작이 될 수 있다.

한우 황체세포의 Progesterone 및 IGF-I 분비에 대한 비장세포의 역할 (Roles of Spleen Cells in the Regulation of Progesterone and IGF -I Secretion in the Hanwoo Luteal Cells)

  • 성환후;민관식;박진기;박성재;양병철;이장형;장원경
    • 한국가축번식학회지
    • /
    • 제23권2호
    • /
    • pp.105-111
    • /
    • 1999
  • 본 연구는 한우 난소의 황체세포를 분리ㆍ체외배양하여 progesterone 과 IGF-I 분비기능에 대한 비장세포의 첨가효과를 검토하여 난소기능에 대한 기초정보를 제공하는데 있다. 도축장에서 도축되는 한우 난소로부터 황체를 분리ㆍ효소처리하여 LLC 와 SLC (1$\times$$10^{6}$ cells/$m\ell$)를 회수하였으며 10% FCS와 antibiotic가 첨가된 D-MEM 배양액에 24 시간 체외배양하였다. 비장세포는 성숙한 거세한우의 비장에서 회수하여 5%, 10% 및 20%를 황체세포에 각각 첨가하여 공배양하였다. 황체일령별 조직내 progesterone 농도는 발정주기 중 중기황체 (CL-3)가 유의적으로 높았다. 비장세포를 5%, 10% 및 20%를 각각 황체세포에 첨가하여 배양한 결과, 배양액 중의 progesterone 농도는 대조구에 비해 유의적인 차이가 발견되지 않았으나 LH(100ng/$m\ell$) 첨가구와 비장세포 5%, 10%, 20% 첨가와 함께 LH 를 각각 공배양구에서 대조구(LH+BP)에 비해 유의적 (p<0.05)으로 높은 progesterone 분비를 나타내었다. 한편, 황체세포의 체외배양에 있어서 IGF-I은 일정하게 분비하였으나 비장세포와 LH+비장세포 5%, 10% 및 20%와의 공배양은 대조구에 비해 큰 차이가 없었으나 LH 단독처리구만이 대조구에 비해 유의적으로 (p<0.05) 높은 수준을 보였다. 이상의 결과로, 비장세포는 황체세포에 작용하여 LH 의 progesterone 분비기능을 촉진시킴으로서 황체세포의 progesterone 분비를 촉진하는 기능이 있으나 IGF-I의 분비기능은 없는 것으로 사료된다.

  • PDF