Browse > Article

Characterization of Site-Specific Recombination by the Integrase MJ1 from Enterococcal Bacteriophage ${\Phi}FC1$  

Park, Mi-Ok (School of Life Sciences and Biotechnology, Korea University)
Lim, Ki-Hong (School of Life Sciences and Biotechnology, Korea University)
Kim, Tae-Hyung (Department of Biochemistry, Chosun University School of Medicine)
Chang, Hyo-Ihl (School of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.2, 2007 , pp. 342-347 More about this Journal
Abstract
Bacteriophage ${\Phi}FC1$ integrase (MJ1) was previously shown to perform a site-specific recombination between a phage attachment site (attP) and a host attachment site (attB) in its host, Enterococcus faecalis, and also in a non-host bacterium, Escherichia coli. Here, we investigated biochemical features of MJ1 integrase. First, MJ1 integrase could perform in vitro recombination between attP and attB in the absence of additional factors. Second, MJ1 integrase interacted with att sites. Electrophoretic mobility shift assays and DNase I footprinting revealed that MJ1 integrase could efficiently bind to all the att sites and that MJ1 integrase recognized relatively short sequences (${\sim}50bp$) containing an overlapping region within attB and attP. These results demonstrate that MJ1 integrase indeed catalyzes an integrative recombination between attP and attB, the mechanism of which might be simple and unidirectional, as found in serine integrases.
Keywords
attB; attP; Enterococcus faecalis; ${\Phi}FC1$; integrase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Bibb, L. A. and G. F. Hatfull. 2002. Integration and excision of the Mycobacterium tuberculosis prophage-like element, $\phi$Rv1. Mol. Microbiol. 45: 1515-1526   DOI   ScienceOn
2 Christiansen, B., L. Brondsted, F. K. Vogensen, and K. Hammer. 1996. A resolvase-like protein is required for the site-specific integration of the temperate lactococcal bacteriophage TP901-1. J. Bacteriol. 178: 5164-5173
3 Landy, A. 1998. Dynamic, structural, and regulatory aspects of site-specific recombination. Annu. Rev. Biochem. 58: 913-949   DOI   ScienceOn
4 Tomar, R. S., H. Matta, and P. M. Chaudhary. 2003. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22: 5712-5715   DOI   ScienceOn
5 Thorpe, H. M., S. E. Wilson, and M. C. M. Smith. 2000. Control of directionality in the site-specific recombination system of the Streptomyces phage $\phi$C31. Mol. Microbiol. 38: 232-241   DOI   ScienceOn
6 Kim, S. Y. and J. Y. Cho. 2005. A modified PCR-directed gene replacements method using $\lambda$-Red recombination functions in Escherichia coli. J. Microbiol. Biotechnol. 15: 1346-1352   과학기술학회마을
7 Yang, H. Y., Y. W. Kim, and H. I. Chang. 2002. Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage $\phi$FC1. J. Bacteriol. 184: 1859-1864   DOI   ScienceOn
8 Yagil, E. S., S. Dolev, J. Oberto, N. Kislev, N. Ramaiah, and R. A. Weisberg. 1989. Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J. Mol. Biol. 207: 695- 717   DOI
9 Chalberg, T. W., J. L. Portlock, E. C. Olivares, B. Thyagarajan, P. J. Kirby, R. T. Hillman, J. Hoelters, and M. P. Calos. 2006. Integration specificity of phage$\phi$C31 integrase in the human genome. J. Mol. Biol. 357: 28-48   DOI   ScienceOn
10 Groth, A. C. and M. P. Calos. 2003. Phage integrases: Biology and applications. J. Mol. Biol. 335: 667-678   DOI   ScienceOn
11 Lauer, P., M. Y. Chow, M. J. Loessner, D. A. Portnoy, and R. Calendar. 2002. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184: 4177-4186   DOI   ScienceOn
12 Bibb, L. A., M. I. Hancox, and G. F. Hatfull. 2005. Integration and excision by the large serine recombinase $\phi$Rv1 integrase. Mol. Microbiol. 55: 1896-1910   DOI   ScienceOn
13 Breuner, A., L. Brondsted, and K. Hammer. 2001. Resolvaselike recombination performed by the TP901-1 integrase. Microbiology 147: 2051-2063
14 Numrych, T. E., R. I. Gumport, and J. F. Gardner. 1992. Characterization of the bacteriophage lambda excisionase (Xis) protein: C-terminus is required for Xis-integrase cooperativity but not for DNA binding. EMBO. J. 11: 3797- 3806
15 Olivares, E. C., R. P. Hollis, and M. P. Calos. 2001. Phage R4 integrase mediates site-specific integration in human cells. Gene 278: 167-176   DOI
16 Bertoni, C., S. Jarrahian, T. M. Wheeler, Y. Li, E. C. Olivares, M. P. Calos, and T. A. Rando. 2006. Enhancement of plasmidmediated gene therapy for muscular dystrophy by directed plasmid integration. Proc. Natl. Acad. Sci. USA 103: 419-424
17 Moitoso de Vargas L., S. Kim, and A. Landy. 1989. DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase. Science 244: 1457-1461   DOI
18 Kim, Y. W. and H. I. Chang. 1994. Isolation and molecular characterization of $\phi$FC1, a new temperate phage from Enterococcus faecalis. Mol. Cells 4: 155-158
19 Ross, W. and A. Landy. 1982. Bacteriophage lambda Int protein recognizes two classes sequence in the phage att site: Characterization of arm-type sites. Proc. Natl. Acad. Sci. USA 79: 7724-7728
20 Ross, W., A. Landy, Y. Kikuchi, and H. Nash. 1979. Interaction of int protein with specific sites on $\lambda$ att DNA. Cell 18: 297-307   DOI   ScienceOn
21 Breuner, A., L. Brondsted, and K. Hammer. 1999. Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1. J. Bacteriol. 181: 7291-7297
22 Hakimi, J. M. and J. J. Scocca. 1994. Binding sites for bacteriophage HP1 integrase on its DNA substrates. J. Biol. Chem. 269: 21340-21345