• Title/Summary/Keyword: Faults

Search Result 2,952, Processing Time 0.037 seconds

Faults Analysis and Dynamic Simulation Method for Interior PM Synchronous Motor (매입형 영구자석 동기전동기의 고장해석 및 시뮬레이션방법)

  • Sun, Tao;Lee, Suk-Hee;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.874-875
    • /
    • 2007
  • This paper introduces major potential faults of IPMSM and their simulation realization methods. The faults of IPMSM, generally, contain single-phase open circuit, single-phase or 3-phase short circuit, and uncontrolled generation. When different fault occurs, the circuit of total system including motor and inverter also will be changed. Therefore, it is necessary to analyze and establish independent model for each kind of fault. In this paper, first, the drive circuit is analyzed as different fault type. Then, the corresponding simulation results solved in Simulink@MATLAB are given. The absence of experiment results leads that the veracity of simulation results can not be verified, but the tendency will be explained by theory analysis.

  • PDF

A Detection and Isolation Scheme for Nonlinear Systems with a Actuator and Sensor Faults (비선형 시스템의 액츄에이터 고장과 센서 고장을 위한 감지 및 분리 기법)

  • Han, Byung-Jo;Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1724-1725
    • /
    • 2007
  • This paper presents a fault detection and isolation(FDI) scheme for a nonlinear systems with a actuator and sensor faults. A residual generator based on the observer model generate the information for a fault detection. The proposed fault estimators are activated for a fault isolation and applied to estimate the time-varying lumped faults(model uncertainty + fault). but a fault estimator error dose not converge to zero since the derivative of lumped fault is not zero. Then the fuzzy neural network(FNN) is used to estimate the fault estimator error. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

Faults Diagnosis of Induction Motors by Neural Network (인공신경망을 이용한 유도전동기 고장진단)

  • Kim, Boo-Y.;Woo, Hyuk-J.;Song, Myung-H.;Park, Joong-J.;Kim, Kyung-M.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2175-2177
    • /
    • 2001
  • This paper presents a faults diagnosis technique of induction motors based on a neural network. Only stator current is measured, transformed by using FFT and normalized for the training. Healthy, bearing fault, stator fault and rotor end-ring fault motors are prepared to obtain the learning data and diagnose the several faults. For more effective diagnosis, the load rate is changed by 100%, 60%, 30% of full load and the obtained are applied to the learning process. The experimental results show the proposed method is very detectable and applicable to the real diagnosis system.

  • PDF

Controller design for Leakage current detection and disconnection (누설전류 검출 및 차단을 위한 제어알고리즘 설계)

  • Ban, Gi-Jong;Yoon, Kwang-Ho;Park, Jin-Soo;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.417-420
    • /
    • 2003
  • In this paper, we have designed the ground faults detection and disconnection algorithm at normal rendition of AC 120V to 240V rating voltage. Ground faults in electrical network have the characteristics of low current, 60Hz frequency to 2kHz frequency. The load rendition are no load and 20A load. The controller have the trip level are 6mA with ground faults. Conventional controller does not have the miswiring condition. The Controller algorithm using pic16c71 microprotessor.

  • PDF

The detection of Broken Rotor Bars in Squirrel Cage Induction Motors (농형 유도전동기의 회전자 도체 불량 검출 방법)

  • Im, Dal-Ho;Kim, Chang-Eob;Jung, Yong-Bae;Kwon, O-Mun;Park, Byung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.65-67
    • /
    • 1995
  • The squirrel cage rotors for induction motors may have several faults such as broken bars, bad spots in end ring, abnormal skew caused by improper processing. These faults have bad effect on the performance of the induction motor. This paper proposes the detecting technique of these faults by analyzing the current of the detecting electric magnet, using 2-D finite element method taking account of the rotor movement.

  • PDF

Fault diagnosis of induction motor using principal component analysis (주성분 분석기법을 이용한 유도전동기 고장진단)

  • Byun, Yeun-Sub;Lee, Byung-Song;Baek, Jong-Hyen;Wang, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.645-648
    • /
    • 2003
  • Induction motors are a critical component of industrial processes. Sudden failures of such machines can cause the heavy economical losses and the deterioration of system reliability. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and the diagnosis of system are considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyses the motor's supply current. since this diagnoses faults of the motor. The diagnostic algorithm is based on the principal component analysis(PCA), and the diagnosis system is programmed by using LabVIEW and MATLAB.

  • PDF

Sensor Fault Detection of Small Turboshaft Engine for Helicopter

  • Seong, Sang-Man;Rhee, Ihn-Seok;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.97-104
    • /
    • 2008
  • Most of engine control systems for helicopter turboshaft engines are equipped with dual sensors. For the system with dual redundancy, analytic methods are used to detect faults based on the system dynamical model. Helicopter engine dynamics are affected by aerodynamic torque induced from the dynamics of the main rotor. In this paper an engine model including the rotor dynamics is constructed for the T700-GE-700 turboshaft engine powering UH-60 helicopter. The singular value decomposition(SVD) method is applied to the developed model in order to detect sensor faults. The SVD method which do not need an additional computation to generate residual uses the characteristics that the system outputs in direction of the left singular vector if an input is applied in direction of the right singular vector. Simulations show that the SVD method works well in detecting and isolating the sensor faults.

  • PDF

A Study on The Design of The Self-Checking Comparator Using Time Diversity (시간 상이점을 이용한 자체 검진 비교기의 설계에 관한 연구)

  • 신석균;양성현;이기서
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.270-279
    • /
    • 1998
  • This paper presents the design of self-checking comparator using the time diversity and the application to 8 bit CPU for the implementation of fault tolerant computer system. this self-checking comparator was designed with the different time Points in which temporary faults were raised by electrical noise between duplicated functional blocks. also this self-checking comparator was simulated in the method of the fault injection using 4 bit shift register counter. we designed the duplicated Emotional block and the self-checking comparator in the single chip using the Altera EPLD and could verify the reliability and the fault detection coverage through the modeling of temporary faults ,especially intermittent faults. at the results of this research, the reliability and the fault detection coverage were implemented through the self-checking comparator using the time diversity.

  • PDF

A Security Description Assistance in Web Services (웹서비스에서 보안 설정 지원)

  • Hung, Pham Phuoc;Nasridinov, Aziz;Byun, Jeong-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.956-959
    • /
    • 2011
  • When SOAP message in Web Services has sensitive and important data, it is necessary to protect the message from XML rewriting attacks. These attacks create a foundation for typical faults in SOAP message and make it vulnerable to use in Web Service environment. Currently, Web Services middleware offers limited functions to detect these faults and possibly fix them. In this paper, we propose a Security Description Assistance which identifies and fixes typical faults in SOAP messages. Our system adapts simulation-based approach, which allows system to self-optimize its performance in different conditions and thus improve the reliability of Web Services.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.