Browse > Article
http://dx.doi.org/10.13088/jiis.2017.23.1.047

Steel Plate Faults Diagnosis with S-MTS  

Kim, Joon-Young (Plant SE Team, Institute for Advanced Engineering (IAE))
Cha, Jae-Min (Plant SE Team, Institute for Advanced Engineering (IAE))
Shin, Junguk (Plant SE Team, Institute for Advanced Engineering (IAE))
Yeom, Choongsub (Plant SE Team, Institute for Advanced Engineering (IAE))
Publication Information
Journal of Intelligence and Information Systems / v.23, no.1, 2017 , pp. 47-67 More about this Journal
Abstract
Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.
Keywords
Big Data; Multiclass Classification; Simultaneous MTS (S-MTS); Mahalanobis Taguchi System (MTS); Steel Plates Faults Diagnosis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ahmet, S, S. Jagannathan, C. Saygin, "Mahalanobis Taguchi System (MTS) as a Prognostics Tool for Rolling Element Bearing Failures", Journal of Manufacturing Science and Engineering, Vol.132, No.5(2010)
2 Cha, J. M., J. Y. Kim, J. U. Shin, and C. S. Yeom, "A Method for Improving Multiclass Classification Performance of Mahalanobis Taguchi System", Proceedings of the Korea Society of IT Service Conference, Vol.2016, (2016), 411-414.
3 Fakhr, M. and A. M. Elsayad, "Steel plates faults diagnosis with data mining models", Journal of Computer Science, Vol.8, No.4(2012), 506-514.   DOI
4 Hong, J. E., "Diagnosis of Spondylopathy Using Mahalanobis Taguchi System", Journal of Society of Korea Industrial and Systems Engineering, Vol.35, No.4(2012), 10-15.   DOI
5 Jin, X. and T. W. S. Chow, "Anomaly Detection of Cooling Fan and Fault Classification of Induction Motor using Mahalanobis-Taguchi System", Expert Systems and Applications, Vol.40, (2013), 5787-5795.   DOI
6 Kim, C. H., S. H. Choi, W. J. Joo, and G. B. Kim, "Classification of Surface Detect on Steel Strip by KNN Classifier", Journal of the Korean Society for Precision Engineering, Vol.23, No.8(2006), 80-88.
7 Moon, C. I., S. H. Choi, W. J. Joo, G. B. Kim, and H. K. Kim, "Development of a Neural Network Classifier for the Classification of Surface Defects of Cold Rolled Strips", Journal of the Korean Society for Precision Engineering, Vol.24, No.4(2007), 76-83.
8 Park, S. G., W. S. Park, Y. Y. Lee, D. S. Kim, and J. E. Oh, "A Fault Diagnosis on the Rotating Machinery Using MTS", Transactions of the Korean Society for Noise and Vibration Engineering, Vol.18, No.6(2008), 619-623.   DOI
9 Ren, J., Y., Cai, X., Xing, and J., Chen, "A method of multi-class faults classification based-on Mahalanobis-Taguchi system using vibration signals", Proceedings of 9th IEEE International Conference on Reliability, Maintainability and Safety (ICRMS), Vol.2011, (2011), 1015-1020.
10 Semeion, Steel Plates Faults Diagnosis Dataset, UCI Repository of machine learning databases, Irvine, CA: University of California, Department of Information and Computer Science, 2016. Available at https://archive.ics.uci.edu/ml/datasets/SteelPlatesFaults (Downloaded 1 September, 2016).
11 Simic, D., V. Svircevic, and S. Simic, "An Approach of Steel Plates Fault Diagnosis in Multiple Classes Decision Making", Hybrid Artificial Intelligence Systems, Vol.8480, (2014), 86-97.
12 Song, S. J., H. J. Kim, S. H. Choi, and J. H. Lee, "Classification of Surface Defects on Cold Rolled Strips by Probabilistic Neural Networks", Journal of the Korean Society for Nondestructive Testing, Vol.17, No.3(1997), 162-173.
13 Su, C.T. and Y.H., Hsiao, "Multiclass MTS for simultaneous feature selection and classification", IEEE Transactions on Knowledge and Data Engineering, Vol.21, No.2(2009), 192-205.   DOI
14 Tian, Y., M. Fu, and F. Wu, "Steel plates fault diagnosis on the basis of support vector machines", Neurocomputing, Vol.151, (2015), 296-303.   DOI
15 Taguchi, G., and R. Jugulum, The Mahalanobis-Taguchi Stretegy: A Pattern Technology System, John Wiley & Sons, New York, 2002.