• Title/Summary/Keyword: Fault tolerant design

Search Result 196, Processing Time 0.029 seconds

A Fault-Tolerant Scheme for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기의 센서 이상허용 제어)

  • 류지수;이기상
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.366-376
    • /
    • 2002
  • A sensor fault detection and isolation scheme(SFDIS) is adopted to improve the reliability of direct torque controlled induction motor drives and the experimental results are discussed. Major contributions include: experimental analysis of a few important sensor faults. design and implementation of the proposed SFDIS, and the fault tolerant control system(FTCS). Although the adopted SFDIS employs only one observer for residual generation, the system has the function of fault isolation that only multiple observer schemes can have. To verify the performance of the proposed scheme, the speed control system is designed for the 2.2kW direct torque controlled Induction motor. Hardware of the control system consists of a control board using TMS320OVC33 and a power stack using IPM. Experimental results for various type of sensor faults show the effectiveness of the SFDIS and the FTCS.

The Design and Reliability Analysis of A Mission-Critical Computer Using Extended Active Sparing Redundancy (확장 ASR 기법을 이용한 임무지향 컴퓨터의 설계 및 신뢰도 분석)

  • Shin, Jin-Beom;Kim, Sang-Ha
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.235-244
    • /
    • 2009
  • The mission-critical computer for air defense has to maintain its operation without any fault for a long mission time and is required to implement at low cost. Now the reliability of the mission critical-computer using Active Sparing Redundancy fault-tolerant technique is inferior to that of the computer using TMR technique. So in this paper are proposed Extended ASR(EASR) technique that provides higher reliability than that of the computer using TMR technique. The fault-tolerant performance of the implemented mission-critical computer is proven through reliability analysis and numbers of fault recovery test. Also, the reliability of the mission-critical computer using EASR technique is compared with those of computer using ASR and TMR techniques. EASR technique is very suitable to the mission-critical computer.

Design of Network-Based Induction Motors Fault Diagnosis System Using Redundant DSP Microcontroller with Integrated CAN Module (DSP 마이크로컨트롤러를 사용한 CAN 네트워크 기반 유도전동기고장진단 시스템 설계)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is includes of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module processes the stator current, voltage, temperatures, vibration signal of the motor.

Design of Fault-Tolerant Inductive Position Sensor (고장 허용 유도형 위치 센서 설계)

  • Paek, Sung-Kuk;Park, Byeong-Cheol;Noh, Myoung-Gyu D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.232-239
    • /
    • 2008
  • The position sensors used in a magnetic bearing system are desirable to provide some degree of fault-tolerance as the rotor position is necessary for the feedback control to overcome the open-loop instability. In this paper, we propose an inductive position sensor that can cope with a partial fault in the sensor. The sensor has multiple poles which can be combined to sense the in-plane motion of the rotor. When a high-frequency voltage signal drives each pole of the sensor, the resulting current in the sensor coil contains information regarding the rotor position. The signal processing circuit of the sensor extracts this position information. In this paper, we used the magnetic circuit model of the sensor that shows the analytical relationship between the sensor output and the rotor motion. The multi-polar structure of the sensor makes it possible to introduce redundancy which can be exploited for fault-tolerant operation. The proposed sensor is applied to a magnetically levitated turbo-molecular vacuum pump. Experimental results validate the fault-tolerance algorithm.

An Instrument Fault Detection Scheme using Function Observers (함수관측자를 이용한 장치고장검출 기법)

  • Lee, Sang-Moon;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.91-97
    • /
    • 2006
  • A major difficulty with the practical application of the multiple observer based IFDI schemes is the computational burden of the residual generation. In this paper, a new residual generator that employs function observers is proposed to reduce the computational burden, and the design methods of the IFDIS, equipped with the residual generator, are presented. The function observers employed in the residual generator can be considered as a dual of the unknown input (function) observer And it can be designed to estimate the measurement errors that are due to sensor faults. The error estimates are further processed to generate the residuals by which reliable fault detection/isolation result car be obtained. The proposed scheme is more useful, in real-time application, than any other multiple state observer based IFDISs. It can be effectively applied to fault tolerant control because the failure effects can be compensated by the use of the estimates of measurement errors. The proposed IFDI scheme is applied to an inverted pendulum control system for the IFDI of failed sensor and fault compensation.

Implementation of Web-based Service Observation System(SOS) (웹기반 서비스 감시 시스템의 구현)

  • Cho, Seung-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.149-154
    • /
    • 2005
  • Computer center of university or company manages many non fault-tolerant servers and network devices to spare expenses. Because a service fault occurs sometimes by worm virus, system bug etc, we need a technique to detect it for continuing service. This paper introduces design and implementation of the system to observe many heterogeneous services, and web-based interface improving convenience of system manager. A system fault is reported to system managers via email or SMS by introduced service observation system, not service user. Then system managers can recover the system fault by this notification and minimize a fault period.

  • PDF

Fault-tolerant clock synchronization for low-cost networked embedded systems (저비용 네트워크 기반 임베디드 시스템을 위한 시간동기 기술)

  • Lee, Dong-Ik
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.52-61
    • /
    • 2007
  • Networked embedded systems using the smart device and fieldbus technologies are now found in many industrial fields including process automation and automobiles. However the discrepancy between a node's view of current time and the rest of the system can cause many difficulties in the design and implementation of a networked system. To provide a networked system with a global reference time, the problem of clock synchronization has been intensively studied over the decades. However, many of the existing solutions, which are mainly developed for large scale distributed computer systems, cannot be directly applied to embedded systems. This paper presents a fault-tolerant clock synchronization technique that can be used for a low-cost embedded system using a CAN bus. The effectiveness of the proposed method is demonstrated with a set of microcontrollers and DC motor-based actuators.

Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method

  • Lee, Jangho;Choi, Hyoung Sik;Shim, Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.54-63
    • /
    • 2016
  • A novel attitude tacking control method using Time Delay Control (TDC) scheme is developed to provide robust controllability of a rigid hexacopter in case of single or multiple rotor faults. When the TDC scheme is developed, the rotor faults such as the abrupt and/or incipient rotor faults are considered as model uncertainties. The kinematics, modeling of rigid dynamics of hexacopter, and design of stability and controllability augmentation system (SCAS) are addressed rigorously in this paper. In order to compare the developed control scheme to a conventional control method, a nonlinear numerical simulation has been performed and the attitude tracking performance has been compared between the two methods considering the single and multiple rotor faults cases. The developed control scheme shows superior stability and robust controllability of a hexacopter that is subjected to one or multiple rotor faults and external disturbance, i.e., wind shear, gust, and turbulence.

Development of Self-Checking characteristics Serial Data Distribution Module (자기검사특성을 갖는 시리얼데이터 분배모듈의 개발)

  • Shin, Duck-Ho;Lee, Jong-Woo;Kim, Jong-Ki;Lee, Key-Soe
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2240-2242
    • /
    • 2002
  • This paper show serial communication method in order to design how to interface between fault tolerant systems with redundancy. Problem has been in the method that fault tolerant system had switched of serial data with common switching device. This problem degrade reliability in itself and total system which is interfaced with that serial communication system. So Arbitration module of serial communication which is suggested in this paper can improve the reliability using voter algorithm which fault is detected passively.

  • PDF

Implementation of PLC Fault Tolerance Communication System in Control & Communication Link (Control & Communication 상에서의 PLC 고장허용 통신 시스템 구현)

  • Lim, Wan-Taek;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2298-2300
    • /
    • 2002
  • In this paper, we introduced a fault tolerant control system with the aim of achieving higher degree of reliability for a PLC control system in the field network. The system reliability was evaluated by MTBF(Mean Time Between Failure). The design of the fault tolerant system through CC-Link of Mitsubisi's MELSEC network was presented. In addition, the PLC data is transmitted from the field network's PC to the host PC by TCP/IP Window socket.

  • PDF