• Title/Summary/Keyword: Fault current limiter

Search Result 563, Processing Time 0.025 seconds

A Study on the Effect of Superconducting Fault Current Limiter in Power System with Separated Bus and Superconducting Fault Current Limiter (모선 분리 운영중인 전력계통에 초전도 한류기 적용 효과 및 영향에 관한 연구)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.74-79
    • /
    • 2012
  • Currently, separated buses were increased to limit a fault currents in power transmission system. However, separated buses caused bad influences such as a decrease of reliability and stability. Superconducting fault current limiter (SFCL) was proposed to limit a fault current lately and that has many merits beside any other solutions. Therefore, we proposed the install of Superconducting fault current limiter (SFCL) in power transmission system with separated bus. And our proposal was verified by reliability of power system.

Analysis on the Protective Coordination with Hybrid Superconducting Fault Current Limiter (반주기 이후 동작 하이브리드 초전도 전류제한기와 보호기기 협조 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1832-1837
    • /
    • 2011
  • The fault current has increased due to the large power demand in power distribution system and network distribution system. To protect the power system effectively from the increased fault current, the superconducting fault current limiter (SFCL) has been notified. However, the conventional SFCL has some problems such as cost, operation, recovery, loss. To solve some problems, the hybrid superconducting fault current limiter using the fast switch was proposed. However, hybrid SFCL also has a problem that is protection coordination in power distribution system with hybrid SFCL. In this paper, the fault current limiting characteristics of hybrid SFCL with first half cycle non-limiting operation according to the fault angle, the resistance of superconducting element, and the magnitude of Current Limit Resistor (CLR) which are the components of hybrid SFCL were analyzed through the experiments.

Characteristics of the Fault Current and the Protection for Superconducting and Normal Conducting Limiter combined with a Transformer (상용변압기와 결합된 초전도체 및 상전도체 한류기의 고장전류 및 보호기기 동작특성)

  • Im, In-Gyu;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1313-1317
    • /
    • 2013
  • With increasing demand of power, the equipment of power system is enlarging and the absolute capacity is going up. As a result, when a fault occurs, the fault current is consistently increasing. Therefore, I suggested some solution for limiting the fault current more efficiently. This study shows the characteristics of superconducting limiting elements and normal conducting elements combined with a transformer. We performed a short-circuit test about the fault current by using SCR switching control system operated from a CT. When short circuit accidents happened in the secondary side of a transformer, fault currents flowed and a SCR switching control system was operated. It resulted in a decrease of the fault current in the limited elements of third winding connected in parallel. For this test, we used YBCO thin films and normal conducting elements as the limited elements. Within a cycle, a superconducting fault current limiter with YBCO thin films reduced more than 90% of fault current because the resistance of superconducting elements sustainedly grew. On the other hand, the limiter with normal conductors limited as much as a set value because its resistance characteristic was linear. Consequently, in case of the limiter with superconductor, limiting range of the circuit was wide but the range of protective detection was undefined. In contrast, as for the limiter with normal conductors, limiting range and protection duty were appropriate.

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

A Study on DC Interruption Technology using a Transformer Type Superconducting Fault Current Limiter to Improve DC Grid Stability (DC 그리드 안정성 향상을 위해 변압기형 초전도 한류기가 적용된 직류 차단 기술에 관한 연구)

  • Hwang, Seon-Ho;Choi, Hye-won;Jeong, In-Sung;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.595-599
    • /
    • 2018
  • Interruption system with the transformer type superconducting fault current limiter(TSFCL) is proposed in this paper. The interruption system with a TSFCL is a technology that it maximizes the interruption function of a mechanical DC circuit breaker using a transformer and a superconducting fault current limiter. By a TSFCL, the system limits the fault current till the breakable current range in the fault state. Therefore, the fault current could be cut off by a mechanical DC circuit breaker. The Interruption system with a TSFCL were designed using PSCAD/EMTDC. In addition, the Interruption system with a TSFCL was applied to the DC test circuit to analyze characteristics of a current-limiting and a interruption operation. The simulation results showed that the Interruption system with a TSFCL interrupted the fault current in a stable when a fault occurred. Also, The current-limiting rate of the Interruption system with a TSFCL was approximately 69.55%, and the interruption time was less than 8 ms.

The Study on Current Limiting Characteristic Analysis of Magnetic Shielding Type Fault Current Limiter

  • Lee, Jae;Lim, Sung-Hun;Kang, Hyeon-Gon;Ko, Seok-Cheol;Han, Byoung-Sung
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.235-240
    • /
    • 2002
  • In this paper, we investigated the current limiting characteristic in the magnetic shielding type fault current limiter(MSFCL). The circuit analysis was executed by using finite differential method(FDM). This paper suggests that the current limiting performance can be achieved in two ways (resistive and inductive one), according to design parameter. By comparing current limiting characteristics in two ways and surveying the important parameters which determine the operational way after fault occurs in the design of MSFCL, it is shown that the magnetic shielding type fault current limiter can be operated in either resistive or inductive way.

  • PDF

The Computer Simulation on the Characteristics of the Non-Inductive Superconducting Fault Current Limiter (무유도성 초전도전류제한기의 특성 해석 및 컴퓨터 시뮬레이션)

  • 주민석;이상진;오윤상;고태국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1050-1060
    • /
    • 1994
  • This paper is a study on the computer simulation of the characteristics of the superconducting fault current limiter. Input variable parameters are apparent power, load resistance value, line resistance value and so on. Initial fault current 2 times larger than the trigger current is required to reduce the switching time of SFCL. The propagation velocity increases abruptly, the transport current is several times larger than the ciritical current. In this paper, the switching time is calculated to be 323$\mu$ sec, and the initial fault current is 19 times larger than the critical current. Because the trigger coils are bifilar winding, they have little impedance in superconducting state. After fault occurred, the limiting coil acts as a superconducting reactor and the trigger coils quench at a critical current. Without the SFCL in the circuit, fault current after the load impedence is shorted might be increased to 1100A. The fault current is, therefore, successfully limited by the superconducting limiting coil to 100A determined by the coil inductance.

  • PDF

Analysis of Fault Point's Distant Effect in Power Distribution System with Superconducting Fault Current Limiter (배전계통의 고장 전류 제한을 위한 초전도 한류기 적용시 고장발생 위치에 따른 영향 분석)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.44-49
    • /
    • 2011
  • Due to increase of fault current, various superconducting fault current limiter (SFCL) are researched. We studied a power distribution system with SFCL. Along the way, we knew characteristics of fault current according to a distance from substation to fault point. Fault current is reduced by distance`s increase from substation. Also, SFCL.s effects are decreased by distance too. Therefore, we analyzed the fault current by a distance from substation to fault point when a SFCL was applied into a power distribution system. We simulated using a PSCAD/EMTDC.

Design Method for HTS Wire Length of the Small Scale Resistive Type Superconducting Fault Current Limiter Considering System Resistance (계통 저항을 고려한 소용량 저항형 한류기의 초전도 선재 소모 길이 산출 연구)

  • Lee, W.S.;Choi, S.J.;Jang, J.Y.;Hwang, Y.J.;Kang, J.S.;Yang, D.G.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.14-18
    • /
    • 2011
  • Electrical system is changing to smart grid which includes the distributed generations with reusable energy sources in these days. The distributed generations are environmentally friendly and have no concern with depletion problem. But dispatching distributed generations can cause an increase of the fault current. Resistive type super conducting fault current limiter is one of the candidates of solution for the large fault problem in smart grid. In this paper, a design method for the wire length of fault current limiter and the result of short circuit test for small scale modules considering system resistance are introduced.

High-Speed Fault Current Detector for Superconducting Fault Current Limiter (초전도 한류기용 고속 고장전류 검출장치)

  • 이우영;박경엽;송기동;이병윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.300-302
    • /
    • 2002
  • In this paper the high-speed fault current detector for superconducting fault current limiter is described. Detecting and interrupting the fault currents as quickly as possible is required in order not to exceed the thermal capacity of superconducting fault current limiter. A detecting method of an instantaneous fault current magnitude is adopted in the equipment described in this paper and a current signal through an analog/digital(A/D) converter would be compared with the reference in the digital signal processor(DSP). Around 20ms has elapsed for detecting the fault current. It is necessary to establish the appropriate trade-off between the reliability and detection speed.

  • PDF