• Title/Summary/Keyword: Fault Location Algorithm

Search Result 162, Processing Time 0.034 seconds

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

A Phase-to-Phase Distance Relaying Algorithm Using Direct 3 Phase Calculation (직접계산을 이용한 상간단락 거리계전 알고리즘)

  • Hyun, Seung-Ho;Lee, Sung-O
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.333_335
    • /
    • 2009
  • It is expected, in the near future, that the use of distributed generation systems should be increased considerably. In this case, distance relay algorithm should be developed in the manner that it can reduce the error due to the in-feed effect. This paper presents a method to consider the fault current rushed from the remote end of a line. In the steady-state, the relays in both ends exchange the voltages of upper nodes. If a fault is perceived, the relay calculates fault location taking the fault current from the remote end by using voltage data of the remote ends obtained just before the fault. Even though this method has inevitable error, it can show more precise fault allocation. The suggested method is applied to a typical transmission system with two power sources in both ends to verify its effectiveness.

  • PDF

An Algorithm of fault Location Technique for Long Transmission Line (송전선로의 고장점 표정 알고리즘)

  • Park, C.W.;Kim, S.R.;Shin, M.C.;Nam, S.B.;Lee, B.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.145-147
    • /
    • 2002
  • In this paper, the improved fault locating method using distributed parameter which calculating the reduced voltage and current according to the ground capacitance in long transmission line was proposed. For the purpose of the fault locating algorithm non influenced source impedance, the loop method was used in the system modeling analysis. To enhance the fault locating, zero sequence of the fault current which is variable according to ground capacitance was not used but positive and negative sequence. System model was simulated using EMTP software. To verify the accuracy of proposed method, in different cases 64 sampled data per cycle was used and 160km and 300km long transmission line has fault resistance $0{\Omega}\;and\;100{\Omega}$ respectively was compared.

  • PDF

A Line-to-ground Cable Fault Location Method for Underground Distribution System (지증 배전계통을 위한 1선지락 고장거리계산 방법)

  • Yang, Xia;Lee, Duck-Su;Choi, Myeon-Song
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.329-331
    • /
    • 2005
  • This paper proposes a line-to-ground cable fault location method for underground distribution system. The researched cable is composed of core and sheath. And underground cabke system has been analyzed using Distributed Parameter Circuit. The effectiveness of proposed algorithm has been verified through EMTDC simulations.

  • PDF

A New Fault Location Technique by Criterion Function (평가함수를 이용한 새로운 송전선로 고장점 추정법)

  • Sul, Yong-The
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.30-32
    • /
    • 1994
  • This paper presents a new method for the computation of fault location in multi-terminal transmission lines. This technique based upon the distributed model of transmission lines to overcome the problems encountered in traditional approaches. This method uses, the magnitude of the differential currents at each terminal and also uses an algorithm an equivalent conversion from an multi-terminal to a 3 terminal system.

  • PDF

Identification of Arcing Fault and Development of An Adaptive Reclosing Technique about Arcing Ground Fault (아크지락사고에 대한 사고 판별 및 적응 재폐로 기법)

  • Kim, H.H.;Choo, S.H.;Chae, M.S.;Park, J.B.;Shin, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.354-356
    • /
    • 2006
  • This paper presents a new one-terminal numerical algorithm for fault location estimation and for faults recognition. The proposed algorithm are derived for the case of most frequent single-phase line to ground fault in the time domain. The arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent of transient. In this paper the algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm the Electro-Magnetic Transient Program(EMTP/ATP) is used.

  • PDF

The Fault Location Estimation Algorithm in Transmission Line Using a Recursive Least Square Error Method (순환형 최소자승법을 이용한 송전선로의 고장점 추정 알고리즘)

  • Yoon, C.D.;Lee, J.J.;Jung, H.S.;Shin, M.C.;Choi, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.203-205
    • /
    • 2002
  • This paper presents the fault location estimation algorithm in transmission line using a recursive least square error method (RLSE). To minimize the computational burden of the digital relay a RLSE approach is used. Computer simulation results of the RLSE algorithm seem promising, indicating that it should be considered for further testing and evaluation.

  • PDF

A fault location algorithm using iterative method at unbalance conditions for distribution feeder systems (불평형시 반복추정기법을 이용한 배전계통 고장점 표정 알고리즘)

  • Lee, D.S.;Jin, B.G.;Lee, S.J.;Choi, M.S.;Kang, S.H.;Ahn, B.S.;Yoon, N.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.121-123
    • /
    • 2001
  • This paper presents a fault location algorithm using iterative method at unbalance condition for distribution feeder systems. Distribution feeders include single phase and three phase laterals. The proposed algorithm achieves a high accuracy by continuously updating voltage and current phasor using the phase components and admittance load model.

  • PDF

A fault location algorithm for underground cable by Distributed Parameter Circuit Analysis (분포정수회로 해석을 통한 지중케이블 고장거리 알고리즘 연구)

  • Yang, Xia;Bae, Y.J.;Choi, M.S.;Lee, S.J.;Kang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.171-173
    • /
    • 2003
  • This paper presents a new fault location algorithm for 3 phase underground cable based on distributed parameter circuit analysis, by which we establish the basic equations for each of core and sheath currents and voltages considering cross-bonding sheaths. The proposed algorithm need simulate by EMTP, and then the EMTP data need be compared with the calculation result in Matlab.

  • PDF

A Study on Fault Diagnosis Algorithm for Rotary Machine using Data Mining Method and Empirical Mode Decomposition (데이터 마이닝 기법 및 경험적 모드 분해법을 이용한 회전체 이상 진단 알고리즘 개발에 관한 연구)

  • Yun, Sang-hwan;Park, Byeong-hui;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.23-29
    • /
    • 2016
  • Rotary machine is major equipment in industry. The rotary machine is applied for a machine tool, ship, vehicle, power plant, and so on. But a spindle fault increase product's expense and decrease quality of a workpiece in machine tool. A turbine in power plant is directly connected to human safety. National crisis could be happened by stopping of rotary machine in nuclear plant. Therefore, it is very important to know rotary machine condition in industry field. This study mentioned fault diagnosis algorithm with statistical parameter and empirical mode decomposition. Vibration locations can be found by analyze kurtosis of data from triaxial axis. Support vector of data determine threshold using hyperplane with fault location. Empirical mode decomposition is used to find fault caused by intrinsic mode. This paper suggested algorithm to find direction and causes from generated fault.