• Title/Summary/Keyword: Fault Location Algorithm

Search Result 162, Processing Time 0.025 seconds

Development of Portable Cable Fault Detection System with Automatic Fault Distinction and Distance Measurement (자동 고장 판별 및 거리 측정 기능을 갖는 휴대용 케이블 고장 검출 장치 개발)

  • Kim, Jae-Jin;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1774-1779
    • /
    • 2016
  • This paper proposes a portable cable fault detection system with automatic fault distinction and distance measurement using time-frequency correlation and reference signal elimination method and automatic fault classification algorithm in order to have more accurate fault determination and location detection than conventional time domain refelectometry (TDR) system despite increased signal attenuation due to the long distance to cable fault location. The performance of the developed system method was validated via an experiment in the test field constructed for the standardized performance test of power cable fault location equipments. The performance evaluation showed that accuracy of the developed system is less than 1.34%. Also, an error of automatic fault type and location by detection of phase and peak value through elimination of the reference signal and normalization of correlation coefficient and automatic fault classification algorithm not occurred.

Fault Location Algorithm using Software Fault Tolerance (Software Fault Tolerance를 이용한 송전선로의 고장점 표정 알고리즘)

  • Jang, Yong-Won;Han, Seung-Su;Kim, Won-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.875-877
    • /
    • 2003
  • This paper use fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line that use only local end voltage and current information. When Newton-Raphson iteration method is used, the Initial value may cause error or cause not suitable result. Suggested new calculation model uses NVP methodology, which is one of the fault tolerance technology to solve this problem. EMTP simulation result has shown effectiveness of the algorithm under various conditions.

  • PDF

Double-Circuit Transmission Lines Fault location Algorithm for Single Line-to-Ground Fault

  • Yang, Xia;Choi, Myeon-Song;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.434-440
    • /
    • 2007
  • This paper proposes a fault location algorithm for double-circuit transmission lines in the case of single line-to-ground fault. The proposed algorithm requires the voltage and current from the sending end of the transmission line. The fault distance is simply determined by solving a second order polynomial equation which is achieved directly by the analysis of the circuit. In order to testify the performance of the proposed algorithm, several other conventional approaches have been taken out to compare with it. The test results corroborate its superior effectiveness.

Fault Location Algorithm for HVDC Cables (HVDC 케이블 고장점 표정 알고리즘)

  • Kwon, Young-Jin;Lee, Dong-Gyu;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.73-74
    • /
    • 2007
  • For a safe operation of HVDC systems, the fault location and clearance of faults in the HVDC lines are important. Past methods for fault location on HVDC cable depend on existence of assistance cables and fault resistance, broken cable and environment of fault location. For complement these problems, in this paper, fault location method using traveling wave and cross correlation function is proposed for HVDC cables. Voltage controlled source and current controlled source HVDC were modeled by EMTDC/PSCAD. The proposed algorithm were verified varying with fault distance, fault resistance.

  • PDF

An Improved Method for Fault Location based on Traveling Wave and Wavelet Transform in Overhead Transmission Lines

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.51-60
    • /
    • 2012
  • An improved method for detecting fault distance in overhead transmission lines is described in this paper. Based on single-ended measurement, propagation theory of traveling waves together with the wavelet transform technique is used. In estimating fault location, a simple, but fundamental method using the time difference between the two consecutive peaks of transient signals is considered; however, a new method to enhance measurement sensitivity and its accuracy is sought. The algorithm is developed based on the lattice diagram for traveling waves. Representing both the ground mode and alpha mode of traveling waves, in a lattice diagram, several relationships to enhance recognition rate or estimation accuracy for fault location can be found. For various cases with fault types, fault locations, and fault inception angles, fault resistances are examined using the proposed algorithm on a typical transmission line configuration. As a result, it is shown that the proposed system can be used effectively to detect fault distance.

A Numerical Algorithm for Fault Location Estimation and Arc Faults Detection for Auto-Reclosure (자동 재폐로기의 동작책무를 위한 아크전압 판정 및 사고거리 표정 알고리즘)

  • Kim, Byeong-Man;Chae, Myeong-Suk;Zheng, Tai-Ying;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1294-1303
    • /
    • 2009
  • This paper presents a new numerical algorithm for fault discrimination and fault location estimation when occur to arcing ground and arcing line to line on transmission lines. The object of this paper is developed from new numerical algorithm to calculate the fault distance and simultaneously to make a distinction between transient and permanent faults. so the first of object for propose algorithm would be distinguish the permanent from the transient faults. This arcing fault discrimination algorithm is used if calculated value of arc voltage amplitude is greater than product of arc voltage gradient and the length of the arc path, which is equal or greater than the flashover length of a suspension insulator string[1-3]. Also, each algorithm is separated from short distance and long distance. This is difference to with/without capacitance between short to long distance. To test the validity of the proposed algorithms, the results of algorithm testing through various computer simulations are given. The test was simulated in EMTP/ATP simulator under a number of scenarios and calculate of algorithm was used to MATLAB.

Fault Location Identification Using Software Fault Tolerance Technique (소프트웨어 Fault Tolerance를 이용한 고장점 표정)

  • Kim Wonha;Jang Yong-Won;Han Seung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.73-78
    • /
    • 2005
  • The management of technological systems will become increasingly complex. Safe and reliable software operation is a significant requirement for many types of system. So, with software fault tolerance, we want to prevent failures by tolerating faults whose occurrences are known when errors are detected. This paper presents a fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line using software fault tolerance technique. To find the fault location of transmission line, we have to solve the 3rd order transmission line equation. A significant improvement in the identification of the fault location was accomplished using the N-Version Programming (NVP) design paradigm. The delivered new algorithm has been tested with the simulation data obtained from the versatile EMTP simulator.

Fault Location Estimation Algorithm of the parallel transmission lines using a variable data window method (가변 데이터 윈도우 기법을 이용한 병행 2회선 송전선 고장점 추정 알고리즘)

  • Jung, Ho-Sung;Yoon, Chang-Dae;Lee, Seung-Youn;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.266-268
    • /
    • 2003
  • This paper proposes the Fault Location Estimation Algorithm in the parallel transmission lines. These algorithm uses a variable data window method based on least square error method to estimate fault impedance quickly. And it selects the optimal equation according to the operation situation and usable fault data for minimizing the fault estimation error effected by the zero sequence mutual coupling. After simulation result, we can see that these algorithm estimates fault location more rapidly and exactly.

  • PDF

Fault Diagnosis Algorithm for Linear Dynamic System (선형동적 시스템에서의 고장진단 알고리즘)

  • Moon, Bong Chae;Kim, Jee Hong;Kim, Byung Kook;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.874-880
    • /
    • 1986
  • A new diagnastic method for detection and location of faults in a linear time-invariant system is proposed. The fault detection algorithm is formulated in a signal space, while the fault location algorithm with estimation is done in a parameter space. In a way different from the conventional approach, the method of fault location with estimation is studied to apply the new concept to establish the models with an unknown parameter under the assumption of 1-fold fault. According to computer simulation, the proposed diagnostic method is effective as an algorithm for fault diagnosis of industdrial process controllers.

  • PDF

Extended Fault Location Algorithm Using the Estimated Remote Source Impedance for Parallel Transmission Lines

  • Ryu, Jeong-Hun;Kang, Sang-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2212-2219
    • /
    • 2018
  • This paper describes extended fault location algorithm using estimated remote source impedance. The method uses data only at the local end and the sequence current distribution factors for more accurate estimation. The proposed algorithm can respond to variation of the local and remote source impedance. Therefore, this method is especially useful for transmission lines interconnected to a wind farm that the source impedance varies continuously. The proposed algorithm is very insensitive to the variation in fault distance and fault resistance. The simulation results have shown the accuracy and effectiveness of the proposed algorithm.