• Title/Summary/Keyword: Fault Frequency

Search Result 604, Processing Time 0.027 seconds

H/W Design for Fault Location System on Underground Power Cable System (고장점 탐색 장치를 위한 H/W 설계)

  • Lee, Jae-Duck;Ryoo, Hee-Suk;Jung, Dong-Hak;Choi, Sang-Bong;Nam, Kee-Young;Jeong, Seong-Hwan;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.709-711
    • /
    • 2005
  • Developing fault location system for underground power cable which can detect its fault location exactly require very high speed data acquisition and signal processing capability. We are developing fault location system which is different from conventional fault locator. This fault location system monitor underground power cable by using on-line speed current sensor and if there are an accident, it record its transient signal and calculate fault location by analyzing it. Signals which acquired when power cable fault arise, showed transient characteristics and its frequency band is very hish. So, to develop fault location system, we designed special high speed data acquisition and signal processing board. In this thesis, we describe on data acquisition and signal processing H/W design for fault location system on underground power cable.

  • PDF

Test Method of an Embedded CMOS OP-AMP (내장된 CMOS 연산증폭기의 테스트 방법)

  • 김강철;송근호;한석붕
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-105
    • /
    • 2003
  • In this paper, we propose the novel test method effectively to detect short and open faults in CMOS op-amp. The proposed method uses a sinusoidal signal with higher frequency than unit gain bandwidth. Since the proposed test method doesn't need complex algorithm to generate test pattern, the time of test pattern generation is short, and test cost is reduced because a single test pattern is able to detect all target faults. To verify the proposed method, CMOS two-stage operational amplifier with short and open faults is designed and the simulation results of HSPICE for the circuit have shown that the proposed test method can detect short and open faults in CMOS op-amp.

Development of a Real-time Fault Diagnosis System for Electric Motors using radiated sound signals (방사음을 이용한 모터 결함 판정용 실시간 전문가 시스템 개발)

  • 경용수;김상명;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.603-608
    • /
    • 2001
  • In order to distinguish fault electric motors automatically in real time. an intelligent diagnosis technique may be required. This paper presents an automatic fault detection system for electric motors by using their acoustic noises. Time signals of each candidate motor were measured in an anechoic chamber for further analysis. Spectral analysis was first carried out and they showed that two typical types of fault motors could be successfully distinguished in the frequency domain; bearing faults and scratches. Unlike the trend of normal motors that shows only a single dominant peak at around 2000 ㎐, several peaks are bunched together in bearing fault motors. On the other hand, large frequency noises at around 6500 ㎐ are newly arisen in scratchy fault motors. However, the processing time for spectral analysis was rather long for a real time application in production lines. Thus, a number of band-pass filters were used in the time domain instead for a real time application. Before applying filters, the bands of filters were set from the information of spectral analysis. By applying a set of band-pass filters, the RMS values of each filtered signal were calculated, and thus the normal and damaged motors could be successfully distinguished.

  • PDF

Diagnostic system development for state monitoring of induction motor and oil level in press process system (프레스공정시스템에서 유도전동기 및 윤활유 레벨 상태모니터링을 위한 진단시스템 개발)

  • Lee, In-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.706-712
    • /
    • 2009
  • In this paper, a fault diagnosis method is proposed to detect and classifies faults that occur in press process line. An oil level automatic monitoring method is also presented to detect oil level. The FFT(fast fourier transform) frequency analysis and ART2 NN(adaptive resonance theory 2 neural network) with uneven vigilance parameters are used to achieve fault diagnosis in proposing method, and GUI(graphical user interface) program for fault diagnosis and oil level automatic monitoring using LabVIEW is produced and fault diagnosis was done. The experiment results demonstrate the effectiveness of the proposed fault diagnosis method of induction motors and oil level automatic monitor system.

TMD effectiveness in nonlinear RC structures subjected to near fault earthquakes

  • Domizio, Martin N.;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • The use of Tuned mass dampers (TMD) has proved to be effective in reducing the effects of vibrations caused by wind loads and far-field seismic action. However, its effectiveness in controlling the dynamic response of structures under near-fault earthquakes is still under discussion. In this case, the uncertainty about the TMD performance arises from the short significant duration of near-fault ground motions. In this work, the TMD effectiveness for increasing the safety margin against collapse of structures subjected to near-fault earthquakes is investigated. In order to evaluate the TMD performance in the proposed scenario, the nonlinear dynamic response of two reinforced concrete (RC) frames was analyzed. TMDs with different mass values were added to these structures, and a set of near-fault records with frequency content close to the fundamental frequency of the structure was employed. Through a series of nonlinear dynamic analysis, the minimum amplitude of each seismic record that causes the structural collapse was found. By comparing this value, called collapse acceleration, for the case of the structures with and without TMD, the benefit produced by the addition of the control device was established.

Oscillation Frequency Detecting Technique for Transmission Line Protection using Prony's Analysis (프로니해석법을 이용한 공진 주파수 검출 알고리즘)

  • Cho, Kyung-Rae;Kim, Soong-Soo;Park, Jong-Koun;Hong, Jun-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.509-512
    • /
    • 1995
  • The relaying algorithm to calculate the fault distance from only transient signal at faults in T/L is presented. In this paper. At faults the oscillation frequency components exist in both voltage and current and these components minimize the input impedance shown in fault point. The equivalent source impedance shown in relaying point is needed to calculate the fault distance using these components. To source impedance, the reflection coefficient between forward wave and backward and the Prony's analysis is also employed to extract the oscillation frequency component from transient signals. The case study show that the new distance relaying algorithm satisfies the high operation speed and high accuracy even if the algorithm uses only transient signals.

  • PDF

A High-Frequency Signal Test Method for Embedded CMOS Op-amps

  • Kim Kang Chul;Han Seok Bung
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • In this paper, we propose a novel test method to effectively detect hard and soft faults in CMOS 2-stage op-amps. The proposed method uses a very high frequency sinusoidal signal that exceeds unit gain bandwidth to maximize the fault effects. Since the proposed test method doesn't require any complex algorithms to generate the test pattern and uses only a single test pattern to detect all target faults, therefore test costs can be much reduced. The area overhead is also very small because the CUT is converted to a unit gain amplifier. Using HSPICE simulation, the results indicated a high degree of fault coverage for hard and soft faults in CMOS 2-stage op-amps. To verify this proposed method, we fabricated a CMOS op-amp that contained various short and open faults through the Hyundai 0.65-um 2-poly 2-metal CMOS process. Experimental results for the fabricated chip have shown that the proposed test method can effectively detect hard and soft faults in CMOS op-amps.

Detection of Input Voltage Unbalance in Induction Motors Using Frequency-Domain Discrete Wavelet Transform

  • Ghods, Amirhossein;Lee, Hong-Hee;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.522-523
    • /
    • 2014
  • Analysis of faults in induction motors has become a major field of research due to importance of loss and damage reduction and maximum online performance of motors. There are several methods to analyze the faults in an induction motor from conventional Fourier transform to modern decision-making neural networks. Considering detectability of fault among all methods, a new fault detection solution has been proposed; it is called as frequency-domain Discrete Wavelet Transform (FD-DWT). In this method, the stator current is decomposed through series of low- and high-pass filters and consequently, the fault characteristics are more visible, because additional components have been reduced. The objective of this paper is early detection of input voltage unbalance in induction motor using wavelet transform in frequency domain. Experimental results show the effectiveness of the proposed method in early detection of faults.

  • PDF

Analysis of Fault Signal in Gear Using Higher Order Time Frequency Analysis

  • Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.268-277
    • /
    • 1999
  • Impulsive acoustic and vibration signals within gear are often induced by impacting of fault tooths in gear. Thus the detection of these impulses can be useful for fault diagnosis. Recently there is an increasing trend towards the use of higher order statistics for fault detection within mechanical systems based on the observation that impulsive signals then to increase the kurtosis values. We show that the fourth order Wigner Moment Spectrum, called the Wigner Trispectrum, has found superior detection performance to second order Wigner distribution for typical impulsive signals in a condition monitoring application. These methods are also applied to data sets measured within an industrial gear box.

  • PDF

Engine Fault Diagnosis Using Sound Source Analysis Based on Hidden Markov Model (HMM기반 소음분석에 의한 엔진고장 진단기법)

  • Le, Tran Su;Lee, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.244-250
    • /
    • 2014
  • The Most Serious Engine Faults Are Those That Occur Within The Engine. Traditional Engine Fault Diagnosis Is Highly Dependent On The Engineer'S Technical Skills And Has A High Failure Rate. Neural Networks And Support Vector Machine Were Proposed For Use In A Diagnosis Model. In This Paper, Noisy Sound From Faulty Engines Was Represented By The Mel Frequency Cepstrum Coefficients, Zero Crossing Rate, Mean Square And Fundamental Frequency Features, Are Used In The Hidden Markov Model For Diagnosis. Our Experimental Results Indicate That The Proposed Method Performs The Diagnosis With A High Accuracy Rate Of About 98% For All Eight Fault Types.