• Title/Summary/Keyword: Fatty

Search Result 8,419, Processing Time 0.038 seconds

Comprehensive comparison of the primary and secondary metabolites and antioxidant activity of Polygoni multiflori Radix by processing methods (가공 방법에 따른 하수오의 영양성분 및 항산화 활성의 종합적인 비교)

  • Hee Yul Lee;Chung Eun Hwang;Kyung Pan Hwa;Du Yong Cho;Jea Gack Jung;Min Ju Kim;Jong Bin Jeong;Mu Yeun Jang;Kye Man Cho
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.287-298
    • /
    • 2022
  • This study investigated the changes in the physiochemical property, phytochemical content, nutritional content and antioxidant activity of Polygoni multiflori Radix by steam, aging, and fermentation. After processing Polygoni multiflori Radix (PMR), pH slightly decreased, while acidity increased (pH 5.70→4.78, acidity 0.23→0.29%). The reducing sugar content increased after aging and fermentation from 1.19 mg/g (PMR) to 1.40 (fermented PMR, FPMR), 1.30 (red PMR, RPMR), 1.53 (fermented red PMR, FRPMR), 1.99 (black PMR, BPMR), and 2.33 mg/g (fermented black PMR, FBPMR). Total phenolic content was highest in PMR (6.05 mg/g) and total flavonoids and maillard product were increased after aging and fermentation of PMR, and were the highest in BPMR (1.60 mg/g) and FBPMR (2.76 O.D.), respectively. The major phytochemical was 2,3,5,4'-tetrahydroxystilbene-2-0-α-glucoside, which were highest in PMR (64.9 mg/g) with 46.47 mg/g at FPMR, 33.94 mg/g at RPMR, 48.76 mg/g at FRPMR, 36.68 mg/g at BPMR and 34.35 mg/g at FBPMR. The main fatty acids and free amino acids were detected as palmitic acid (C16:0) and proline, respectively. Generally, 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging activities and FRAP reducing powers were shown high in PMR (39.06%, 98.32%, and 2.61 O.D. in extracts concentration 1.0 mg/mL), then were decreased after aging and fermentation.

Increased Water Resistance and Adhesion Force to Skin through the Hybrid of Fatty Acid Ester and Titanium Dioxide (지방산 에스테르와 티타늄다이옥사이드의 복합화를 통한 내수성과 피부 밀착력 개선)

  • Ji Yeon Hong;Chi Je Park;Yong Woo Kim;Sang Keun Han;Sung Bong Kye;Ho Sik Roh;Soo Nam Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.247-258
    • /
    • 2023
  • This study aims to investigate the enhancement of water resistance and improvement in adhesion to the skin by combining dextrin palmitate and isopropyl titanium triisostearate coating materials with titanium dioxide. Due to the recent increase in consumers who enjoy outdoor activities, the demand for sunscreen with excellent water resistance is increasing. Prior research was conducted with O/W, Pickering, and W/O/W multiple formulations, but there was a limit to water resistance. The purpose of this study is to develop a complex inorganic powder that can improve water resistance and increase adhesion to the skin to solve this problem. First, we combined dextrin palmitate and isopropyl titanium triisostearate coating materials to form a composite with titanium dioxide. The coating of the inorganic powder was confirmed using FE-SEM and FT-IR analysis. The composite exhibited significantly higher in vitro water resistance compared to other formulations. The hydrophobicity of the coated inorganic powder was compared by measuring the contact angles. When the coated inorganic powder was applied to the W/O sunscreen formulation and the non-coated inorganic powder was applied to the W/O sunscreen formulation as a control, the SPF of the sunscreen containing the coated inorganic powder was higher. These results were the same when observed with a UV camera. Finally the adhesion of the coated inorganic powder to the skin was assessed by applying it to a foundation product. In vivo study, it was observed that the product formulated with the coated powder exhibited less smudging compared to the foundation product formulated with the non-coated powder. The developed inorganic powder in this study demonstrated excellent adhesion to the skin, providing a superior sensory experience, as well as enhanced hydrophobicity and remarkable water resistance effects. In the future, the result of this study is expected to help develop various sunscreen products to improve water resistance.

Effects of Gibberellic Acid and Abscisic Acid on Proteolysis of Senescing Leaves from Rice Seedlings (노화 수도유묘엽의 단백질분해에 미치는 GA$_3$과 ABA의 영향)

  • Kang, S. M;Kang, N. J;Cho, J. L;Kim, Z. H;Kwon, Y. W
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.350-359
    • /
    • 1993
  • The effect of gibberellic acid ($GA_3) and abscisic acid (ABA) on KCl-enhanced proteolysis of senescing leaves of rice(Oryza sativa L. cv. Chilsung) was studied. Emphasis was given to their effects on KCI-enhanced efflux of amino acids and proteinase activity. When treated singly, $GA_3 affected leaf proteolysis little, while ABA increased proteolysis, the rate of amino acid efflux, and ribulose -1,5 -bisphosphate carboxylase / oxygenase (Rubisco)-degrading endoproteinase activity. An additive increase in all three parameters mentioned above was observed when leaves were treated with ABA and KCl. No such an additive effect was found when $GA_3 was treated with KCl. Both $GA_3 and ABA helped to alleviate the KCI-suppressed activity of Rubisco-degrading exoproteinases. The additive increase in proteolysis of rice leaves in the presence of both ABA and KCl could thus be ascribed to a further increase in the efflux of protein hydrolyzates and Rubisco-degrading endoproteinase activity. An increase in proteolysis was accompanied by a decrease in water absorption, and the combined treatment of ABA with KCl resulted in a further reduction of water absorption.

  • PDF

Isolation and Characterization of the Indigenous Microalgae Chlamydomonas reinhardtii K01 as a Potential Resource for Lipid Production and Genetic Modification (지질생산 및 유전자 조작의 잠재적 자원으로서의 토착 미세조류 Chlamydomonas reinhardtii K01의 분리 및 특성)

  • Kim, Eun-Kyung;Cho, Dae Hyun;Suh, Sang-Ik;Lee, Chang-Jun;Kim, Hee-Sik;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.202-209
    • /
    • 2022
  • The green alga Chlamydomonas reinhardtii, a unicellular haploid eukaryote, has long been used by researchers and industries as a cell factory to produce high value-added microalgae substances using genetic modification. Microalga K01, presumed to be Chlamydomonas, was isolated from 12 freshwater samples from the Chungcheong and Jeolla regions to replace C. reinhardtii, an introduced species currently used in most basic and industrial research. The isolated K01 strain was identified as C. reinhardtii through morphological and phylogenetic studies of the 18S rDNA gene sequence (NCBI accession number KC166137). The growth and lipid content of the isolated C. reinhardtii K01 were compared with three wild and four mutant strains in TAP medium, and it was found that the K01 strain could produce 1.74×107 cells/ml by the third day of culture. The growth rate of C. reinhardtii K01 was 1.5 times faster than UTEX2244, which showed the highest number of cells (1.20×107 cells/ml) among the compared strains. The lipid content of the isolated C. reinhardtii K01 (20.67%) was similar to those of the wild strains, although the fatty acid oleate C18:1 was not detected in the isolated strain but was identified in the seven others. The cell density of the isolated strain increased to 0.87 g/l during a six-day culture in BG11 medium, where nitrate (NaNO3) was introduced as a nitrogen source, while the seven acquired strains showed almost no cell proliferation.

Promotion effects of steam-dried Betula platyphylla extract on hair regrowth (자작나무 증포 추출물의 발모 촉진 효과)

  • Ahn, Jeong Won;Jang, Su Kil;Jo, Bo Ram;Kim, Hyun Soo;Jeoung, Eui Young;Hillary, Kithenya;Yoo, Yeong Min;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • Regulation of the hair follicle cycle in association with dermal papilla cells is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether steam-dried Betula platyphylla extracts (BPE) promote hair growth by upregulating in vitro and in vivo responses of dermal papilla cells. The data showed that BPE3 contained high amounts of phenolic compounds with higher antioxidant effects and increased hair growth-related genes, including fibroblast growth factor7 and Wnt7b, in dermal papilla cells. Notably, BPE3 effectively enhanced the formation of hair follicles by increasing FGF7, Wnt7b, and vascular endothelial growth factor in C57BL/6N dorsal skins. Additionally, BPE3 significantly decreased the expression of inflammatory repertoires, inducible nitric oxide synthase, interleukin-6, and cyclooxygenase 2. Several small molecules, such as betulin and unsaturated fatty acids, support the pharmacological activity of BPE3. In conclusion, BPE3 effectively promoted hair growth by activating dermal papilla cells and enhancing hair follicle cycles by attenuating the inflammatory environment in the scalp.

Shoulder Replacement Arthroplasty after Failed Proximal Humerus Fracture (상완골 근위부 골절의 치료 실패 후 견관절 치환술)

  • Park, Jin-Young;Seo, Beom-Ho;Lee, Seung-Jun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.2
    • /
    • pp.110-119
    • /
    • 2019
  • Proximal humerus fracture can be defined as a fracture that occurs in the surgical neck or proximal part of the humerus. Despite the appropriate treatment, however, various complications and sequelae can occur, and the treatment is quite difficult often requiring surgical treatment, such as a shoulder replacement. The classification of sequelae after a proximal humerus fracture is most commonly used by Boileau and can be divided into two categories and four types. Category I is an intracapsular impacted fracture that is not accompanied by important distortions between the tuberosities and humeral head. An anatomic prosthesis can be used without greater tuberosity osteotomy. In category I, there are type 1 with cephalic collapse or necrosis with minimal tuberosity malunion and type 2 related to locked dislocation or fracture-dislocation. Category II is an extracapsular dis-impacted fracture with gross distortion between the tuberosities and the humeral head. To perform an anatomic prosthesis, a tuberosity osteotomy should be performed. In category II, there are type 3 with nonunion of the surgical neck and type 4 with severe tuberosity malunion. In type 1, non-constrained arthroplasty (NCA) without a tuberosity osteotomy should be considered as a treatment. On the other hand, reverse shoulder arthroplasty (RSA) should be considered if types 1C or 1D accompanied by valgus or varus deformity or severe fatty degeneration of the rotator cuff. In general, the results are satisfactory when NCA is performed in type 2 sequelae. On the other hand, RSA can be considered as an option when there is no bony defect of the glenoid and a defect of the rotator cuff is accompanied. In type 3, it would be effective to perform internal fixation with a bone wedge graft rather than shoulder replacement arthroplasty. Recent reports on the results of RSA are also increasing. On the other hand, recent reports suggest that good results are obtained with RSA in type 3. In type 4, RSA should be considered as a first option.

Rumen Fermentation was Changed by Feed Inoculation Method in In Vitro (사료 접종 방법에 의한 in vitro 반추위 발효 상성 변화)

  • Yoo, Dae-Kyum;Moon, Joon-Beom;Kim, Han-Been;Yang, Sung-Jae;Park, Joong-Kook;Lee, Se-Young;Seo, Ja-Kyeom
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.30 no.3
    • /
    • pp.111-120
    • /
    • 2019
  • The objective of this study was to investigate the effect of different feed inoculation method on rumen fermentation in an in vitro. Three experimental treatments were used: control (CON, direct dispersion of feed (2 g) in rumen fluid), combinations of direct dispersion (1 g) and nylon bag (DNB, pore size: 50 ㎛, 1 g), and nylon bag (NB, 2 g). An in vitro fermentation experiment was carried out using strained rumen fluid for 48 h incubation time and timothy was used as a substrate. At the end of the incubation, in vitro dry matter digestibility (IVDMD), in vitro neutral detergent fiber digestibility (IVNDFD), pH, volatile fatty acids (VFA), ammonia nitrogen (NH3-N), and microbial community were evaluated and gas production was estimated at 3, 6, 12, 24, 48 h incubation periods. Gas production was higher in CON than DNB and NB at 6 and 12 h incubation time (p<0.01). There were no differences in final gas production, pH, NH3-N concentration, total VFA production, and VFA profiles among treatments. The IVDMD was lowest in CON (p<0.01) but the IVNDFD was not differed by feed distribution methods. There were no significant differences in general bacteria and fungi. Protozoa count was highest in NB treatment among treatments (p<0.01). The abundance of cellulolytic bacteria, Ruminococcus flavefaciens and Fibrobacter succinogenes, was highest in the CON among treatments (p<0.01).

Bioconversion of nutrient and phytoestrogen constituents during the solid-state fermentation of soybeans by mycelia of Tricholoma matsutake (송이버섯 균사체를 이용한 대두 고체발효 중 영양성분과 식물성 에스트로겐 성분의 생물전환)

  • Hee Yul Lee;Kye Man Cho;Ok Soo Joo
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1012-1028
    • /
    • 2023
  • The findings of this study confirmed the alteration of β-glucosidase activity, nutritional constituents, isoflavones, antioxidant activities, and digestive enzyme inhibition activities in soybeans during solid-state fermentation times with mycelia of Tricholoma matsutake. After nine days, the highest activity level was observed for β-glucosidase (3.90 to 38.89 unit/g) and aglycones (163.03 to 1,074.28 ㎍/g). The sum of isoflavones showed a significant decrease (3,489.41 to 1,325.66 ㎍/g) along with glycosides (2,753.87 to 212.43 ㎍/g) for fermentation, while fatty acids showed a slight increase and amino acids showed a marked increase. Total phenolic and flavonoid contents showed a corresponding increase according to fermentation times (5.58 to 15.09 GAE mg/g; 0.36 to 1.58 RE mg/g). Antioxidant and enzyme inhibition activities also increased; in particular, the highest level of scavenging activities was observed for ABTS (up 60.13 to 82.08%), followed by DPPH (up 63.92% to 71.98%) and hydroxyl (up 36.01 to 52.02%) radicals. Of particular interest, α-glucosidase (6.69 to 83.49%) and pancreatic lipase inhibition (1.22 to 77.43%) showed a marked increase. These results demonstrated that fermentation of soybeans with the mycelia of T. matsutake enhanced the nutritional and functional constituents, and the biological activities of soybeans. Thus, this fermentation technology can be used to produce a novel functional materials from soybeans.

Improving the Nutritional Value of Tenebrio molitor Larvae by Feeding Them a Soymilk Residue-added Food Source (두유박 첨가 먹이원 급이에 따른 갈색거저리 유충의 영양성 증진 효과)

  • So-Yun Kim;Min Ji Park;Jeong-Hun Song;Sangmin Ji;Gyu-Dong Chang;Sun Young Kim
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.191-198
    • /
    • 2024
  • To verify the nutritional value and safety of larvae fed with a soymilk residue-added food source, we compared and analyzed the nutritional components of and harmful substances in Tenebrio molitor larvae reared on wheat bran. Crude protein content based on dry weight was 1.2 times higher in the 10% soymilk residue-fed group (SR) (54.0%) than in the wheat bran-fed group (WB) (43.5%). Dietary fiber also tended to be 1.9 times more in the SR (4.9%) than the WB (2.5%). Among unsaturated fatty acids, the linoleic acid content was found to be 1.1-fold higher in the SR (32.9%) than in the WB (29.0%). Potassium, which was the most abundant among the macro minerals, was 1.1-fold more abundant in the WB (1,074.5 mg/100 g) than in the SR (1,014.0 mg/100 g). Among the micro minerals, zinc content was 1.2-fold higher in the SR (14.5 mg/100 g) than in the WB (11.9 mg/100 g). The results of the analysis of hazardous substances in the WB and SR revealed that the amount of heavy metals met the standards for heavy metals in edible insects, and food poisoning-inducing bacteria such as Escherichia coli and Salmonella spp. were not detected in all groups. These results indicate that mealworm larvae fed with 10% soymilk residue have abundant nutrients and are safe for intake. Thus, food sources with added soymilk residue has the potential to be used as feed ingredients.

Changes in Phytosterol Content in Cobs and Kernels During Physiological Maturity of Corn Ears (옥수수 이삭 등숙 기간 동안 속대와 종실의 Phytosterol 함량 변화)

  • Jun Young Ha;Young Sam Go;Jae Han Son;Mi-Hyang Kim;Kyeong Min Kang;Tae Wook Jung;Beom Young Son;Hwan Hee Bae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.392-401
    • /
    • 2023
  • Corn (Zea mays L.) is one of the world's most important crops, along with wheat and rice, with a global corn production expected to reach 1,154.5 million tons in 2023. Considering this grain production, The generation of corn cob is expected to reach approximately 207.8 million tons in 2023. However, as an agricultural by-product, corn cobs are often considered waste and remain underutilized. Phytosterols, which are abundant in vegetable oils such as corn oil, provide a number of health benefits, including liver health, cholesterol reduction, and protection against chronic diseases such as diabetes. In this study, we investigated the potential of Kwangpyeongok ears, which are commonly used as grain and silage corn in Korea. We also examined the variation in phytosterol content with the maturity of corn ears to identify the optimal time for utilization. At the beginning of physiological maturity, corn cobs had 113.3 mg/100g DW of total phytosterols, which was highest phytosterol abundance during the growth stage. Corn kernels also had the highest phytosterol content at the beginning of physiological maturity. While previous studies on corn bioactive compounds have mainly focused on the kernels, the results of this study highlight that cobs are an excellent source of these compounds. Furthermore, phytosterol levels were influenced by genetic factors and developmental stages, suggesting the to increase the use of cobs as a source of bioactive compounds.