DOI QR코드

DOI QR Code

Changes in Phytosterol Content in Cobs and Kernels During Physiological Maturity of Corn Ears

옥수수 이삭 등숙 기간 동안 속대와 종실의 Phytosterol 함량 변화

  • Jun Young Ha (Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Young Sam Go (Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jae Han Son (Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Mi-Hyang Kim (Crop Post-Harvest Technology Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kyeong Min Kang (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Tae Wook Jung (Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Beom Young Son (National Institute of Crop Science, Rural Development Administration) ;
  • Hwan Hee Bae (Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • 하준영 (농촌진흥청 국립식량과학원 중부작물부 중부작물과) ;
  • 고영삼 (농촌진흥청 국립식량과학원 중부작물부 중부작물과) ;
  • 손재한 (농촌진흥청 국립식량과학원 중부작물부 중부작물과) ;
  • 김미향 (농촌진흥청 국립식량과학원 중부작물부 수확후이용과) ;
  • 강경민 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 정태욱 (농촌진흥청 국립식량과학원 중부작물부 중부작물과) ;
  • 손범영 (농촌진흥청 국립식량과학원) ;
  • 배환희 (농촌진흥청 국립식량과학원 중부작물부 중부작물과)
  • Received : 2023.10.26
  • Accepted : 2023.11.07
  • Published : 2023.12.01

Abstract

Corn (Zea mays L.) is one of the world's most important crops, along with wheat and rice, with a global corn production expected to reach 1,154.5 million tons in 2023. Considering this grain production, The generation of corn cob is expected to reach approximately 207.8 million tons in 2023. However, as an agricultural by-product, corn cobs are often considered waste and remain underutilized. Phytosterols, which are abundant in vegetable oils such as corn oil, provide a number of health benefits, including liver health, cholesterol reduction, and protection against chronic diseases such as diabetes. In this study, we investigated the potential of Kwangpyeongok ears, which are commonly used as grain and silage corn in Korea. We also examined the variation in phytosterol content with the maturity of corn ears to identify the optimal time for utilization. At the beginning of physiological maturity, corn cobs had 113.3 mg/100g DW of total phytosterols, which was highest phytosterol abundance during the growth stage. Corn kernels also had the highest phytosterol content at the beginning of physiological maturity. While previous studies on corn bioactive compounds have mainly focused on the kernels, the results of this study highlight that cobs are an excellent source of these compounds. Furthermore, phytosterol levels were influenced by genetic factors and developmental stages, suggesting the to increase the use of cobs as a source of bioactive compounds.

본 연구에서는 농업부산물인 옥수수 속대의 생리활성 화합물 공급원으로의 잠재적 활용 가능성을 탐색하기 위해 이삭의 성숙 단계에 따른 phytosterol 함량 변화를 측정하였다. 1. 옥수수 이삭의 crude fat 함량 변이는 속대가 3 DAS에서 54 DAS까지 2.51±0.06-0.33±0.04%, 종실은 9 DAS에서 54 DAS까지 1.84±0.04-4.91±0.28%로 나타났으며 종실은 성숙할수록 crude fat 함량이 증가하였고 속대는 반대의 경향을 나타내었다. 2. 옥수수 이삭의 등숙 기간 동안 속대와 종실에서 campesterol, stigmasterol, β-sitosterol은 주요 phytosterol로 검출되었으며, total phytosterol 함량은 속대가 3 DAS에서 54 DAS까지 134.84±4.58-48.86±0.89 mg/100g DW, 종실은 9 DAS에서 54 DAS까지 83.15±2.74-42.12±0.08 mg/100g DW로 생리적 성숙 초기 단계에 가장 높은 함량을 보인 뒤 점차적으로 감소하였다. 3. Hierarchical clustering heatmap analysis와 principal component analysis에서 옥수수 속대와 종실은 생리적 성숙 단계 및 조직 부위에 따라 구분이 되었다. 옥수수 속대를 새로운 phytosterol 공급원으로써 활용하기 위해 함량이 가장 풍부한 시기는 R1-R2 stage이며, 이삭 성숙 전체 단계에서 속대에는 종실보다 많은 phytosterol이 존재하므로 농업부산물인 속대를 새로운 phytosterol 공급원으로 활용할 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 고품질 내재해성 사료·곡실용 옥수수 신품종 개발 연구사업(세부과제명: 사료용 옥수수 우량계통육성 및 생산력검정시험, 세부과제번호: PJ014292012023)의 지원에 의해 이루어진 것으로 이에 감사드립니다.

References

  1. Bae, H. H., J. Y. Ha, Y. S. Go, J. H. Son, B. Y. Son, J. H. Kim, S. Shin, T. W. Jung, and G. Yi. 2022. High phytosterol levels in corn cobs point to their sustainable use as a nutritional source. Appl. Biol. Chem. 65 : 69. 
  2. Barth, E., J. T. V. d. Resende, A. F. P. Moreira, K. H. Mariguele, A. R. Zeist, M. B. Silva, G. C. G. Stulzer, J. G. M. Mafra, L. Simoes Azeredo Goncalves, S. R. Roberto, and K. Youssef. 2020. Selection of Experimental Hybrids of Strawberry Using Multivariate Analysis. Agronomy. 10(4) : 598. 
  3. Boutte, Y. and Y. Jaillais. 2020. Metabolic cellular communications: feedback mechanisms between membrane lipid homeostasis and plant development. Dev. Cell. 54 : 171-182.  https://doi.org/10.1016/j.devcel.2020.05.005
  4. Bradshaw, R. A. and P. D. Stahl. 2015. Encyclopedia of cell biology. Academic Press. 
  5. Calder, P. C. 2015. Functional roles of fatty acids and their effects on human health. J. Parenter. Enteral Nutr. 39(1) : 18-32. 
  6. Crawford Jr, T. W., V. V. Rendig, and F. E. Broadbent. 1982. Sources, fluxes, and sinks of nitrogen during early reproductive growth of maize (Zea mays L.). Plant Physiol. 70(6) : 1654-1660.  https://doi.org/10.1104/pp.70.6.1654
  7. Dey, P. M. and J. B. Harborne. 1997. Plant biochemistry. Elsevier.
  8. Felker, F. C. 1992. Participation of cob tissue in the uptake of medium components by maize kernels cultured in vitro. J. Plant Physiol. 139(6) : 647-652.  https://doi.org/10.1016/S0176-1617(11)81705-0
  9. Garces, R. and M. Mancha. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 211(1) : 139-143.  https://doi.org/10.1006/abio.1993.1244
  10. Ha, C. E. and N. Bhagavan. 2011. Essentials of medical biochemistry: with clinical cases. Academic Press. 
  11. Hadi, A., A. Arab, S. Moradi, A. Pantovic, C. C. Clark, and E. Ghaedi. 2019. The effect of l-arginine supplementation on lipid profile: a systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 122(9) : 1021-1032.  https://doi.org/10.1017/S0007114519001855
  12. Jansen, C. 2012. Breeding for cob traits in maize. Iowa State University. 
  13. Jekel, A., H. Vaessen, and R. Schothorst. 1998. Capillary gas-chromatographic method for determining non-derivatized sterols-some results for duplicate 24 h diet samples collected in 1994. Fresenius J. Anal. Chem. 360 : 595-600.  https://doi.org/10.1007/s002160050764
  14. Kanengoni, A., M. Chimonyo, B. Ndimba, and K. Dzama. 2015. Potential of using maize cobs in pig diets-A review. Asian Australas. J. Anim. Sci. 28(12) : 1669-1679.  https://doi.org/10.5713/ajas.15.0053
  15. Korea Rural Economic Institute (KREI). 2023. Agricultural Outlook 2023 Korea. pp. 485-531. 
  16. Lee, Y. Y., H. M. Park, T. Y. Hwang, S. L. Kim, M. J. Kim, S. K. Lee, M. J. Seo, K. J. Kim, Y. U. Kwon, and S. C. Lee. 2015. A correlation between tocopherol content and antioxidant activity in seeds and germinating seeds of soybean cultivars. J. Sci. Food Agric. 95(4) : 819-827.  https://doi.org/10.1002/jsfa.6963
  17. Masisi, K., K. Le, N. Ghazzawi, M. H. Moghadasian, and T. Beta. 2017. Dietary corn fractions reduce atherogenesis in low-density lipoprotein receptor knockout mice. Nutr. Res. 37 : 87-96.  https://doi.org/10.1016/j.nutres.2016.12.005
  18. Moreau, R. A., L. Nystrom, B. D. Whitaker, J. K. Winkler-Moser, D. J. Baer, S. K. Gebauer, and K. B. Hicks. 2018. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 70 : 35-61.  https://doi.org/10.1016/j.plipres.2018.04.001
  19. Normen, L., L. Ellegard, H. Brants, P. Dutta, and H. Andersson. 2007. A phytosterol database: Fatty foods consumed in Sweden and the Netherlands. J. Food Compos. Anal. 20 : 193-201.  https://doi.org/10.1016/j.jfca.2006.06.002
  20. Pang, Z., G. Zhou, J. Ewald, L. Chang, O. Hacariz, N. Basu, and J. Xia. 2022. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17 : 1735-1761.  https://doi.org/10.1038/s41596-022-00710-w
  21. Poli, A., F. Marangoni, A. Corsini, E. Manzato, W. Marrocco, D. Martini, G. Medea, and F. Visioli. 2021. Phytosterols, cholesterol control, and cardiovascular disease. Nutrients. 13(8) : 2810. 
  22. Rural Development Administration (RDA). 2012. Agricultural science technology standards for investigation of research. pp. 366-385. 
  23. Shimbo, K., S. Kubo, Y. Harada, T. Oonuki, T. Yokokura, H. Yoshida, M. Amao, M. Nakamura, N. Kageyama, and J. Yamazaki. 2010. Automated precolumn derivatization system for analyzing physiological amino acids by liquid chromatography/mass spectrometry. Biomed. Chromatogr. 24(7) : 683-691.  https://doi.org/10.1002/bmc.1346
  24. Verleyen, T., M. Forcades, R. Verhe, K. Dewettinck, A. Huyghebaert, and W. De Greyt. 2002. Analysis of free and esterified sterols in vegetable oils. J. Am. Oil Chem. Soc. 79(2) : 117-122.  https://doi.org/10.1007/s11746-002-0444-3
  25. Yu, J. K. and Y. S. Moon. 2022. Corn Starch: Quality and Quantity Improvement for Industrial Uses. Plants. 11(1) : 92.