• 제목/요약/키워드: Fatigue durability analysis

검색결과 256건 처리시간 0.276초

불규칙 피로 하중을 받는 자동차의 컨트롤 암의 구조 해석 (Structural Analysis on Control Arm of Automobile under Nonuniform Fatigue Load)

  • 조재웅
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.87-92
    • /
    • 2011
  • This study analyzes structural stress and fatigue on control arm of automobile under nonuniform load. Maximum equivalent stress at bolt part is shown with 419.1MPa and the corner is deformed with maximum displacement of 1.1628mm. Among 3 cases of nonuniform fatigue loads applying on control arm, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of $-10^5MPa$ to $10^5MPa$ and the amplitude stress of 0 MPa to $10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Safety and durability on automobile can be effectively improved by applying the fatigue analysis result on control arm.

엔진 밸런스 샤프트 하우징의 내구성 평가를 위한 CAE 절차 개발 (CAE Procedure of Engine Balance Shaft Housing for Prediction of Durability)

  • 최항집
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.133-138
    • /
    • 2007
  • The balance shaft housing in the recent engines tends to have the high cycle fatigue crack caused by increased engine power. In this paper, a CAE procedure is introduced to predict the durability of the balance shaft housing. The procedure is performed through two analysis steps. In the first step, the multibody dynamic simulation is used to obtain more accurate loading boundary conditions applied to the finite element model for the following step. Next, the finite element analysis is performed to predict the durability of the balance shaft housing through the calculation of the safety factor. Through this CAE procedure, the revised balance shaft housing was developed to improve the durability. And the durability of the housing was confirmed experimentally.

다물체 동역학을 이용한 후륜 현가 부품의 내구해석 (Fatigue Analysis of Rear Suspension Part Applying Multi-body Dynamics)

  • 전성민;조병관
    • 대한기계학회논문집A
    • /
    • 제39권10호
    • /
    • pp.1039-1044
    • /
    • 2015
  • 차량의 개발단계에서 내구성 평가는 많은 시간과 비용이 소요된다. 최근 완성차 업체들은 자사만의 내구성 평가방법을 개발하고 수정 보완하는데 많은 노력을 기울이고 있다. 본 연구는 토션빔 액슬의 내구성 평가를 위한 통합 CAE 기법을 개발함에 있어 세계적인 자동차 업체의 정형화된 CAE 기법과의 비교를 통해 경제성을 평가하고 실험적 방법을 통해 얻은 데이터와의 비교를 통해 신뢰성을 확보하는 것을 목표로 하였다. 이를 위해 현재까지 널리 사용되어 온 준정적 내구해석의 과정 및 결과에서 보완점과 문제점을 분석하였고, 업계의 요구사항을 면밀히 검토하여 정규모드해석을 통해 다물체 동역학 모델을 구성하고 이를 이용한 동역학 해석을 진행한 후 그 결과를 이용하여 내구해석인 공진 내구해석 기법을 제안하였다.

페달의 내구성에 대한 구조 해석 (Structural Analysis on Durability of Pedal)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.88-95
    • /
    • 2011
  • In this study, the deformation, stress, vibration, fatigue life and the probability of damage are analyzed at the pedal applied by the force of 300N. The maximum stress at the lower of pedal is shown as 20.801MPa. And the maximum displacement is 0.85mm at the maximum response frequency as 3800Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{5}MPa$ and the amplitude stress of 0 to $10^{5}MPa$, the possibility of maximum damage becomes 0.6%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively improved with the design of pedal by investigating durability against its damage.

공작기계 기어박스에서의 스퍼기어와 헬리컬기어에 대한 강도 내구성 (Strength Durability on Spur and Helical Gears in the Gearbox of Machine Tool)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.103-110
    • /
    • 2014
  • In this study, spur and helical box models of an existing machine tool are investigated using structural and fatigue analyses. As the helical box model is shown to have less stress and deformation than those characteristics of the spur box model, the helical box has more strength and more transmission efficiency on the structure. In terms of fatigue analysis, the helical box model has more repeated fatigue strength than that of the spur box model. These study results can be effectively utilized in the design of real gear boxes of machine tools by anticipating and investigating prevention and durability against damage.

로워암 리브 두께에 따른 구조 강도 해석 (Structural Strength Analysis due to Rib Thickness of Lower Arm)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.126-134
    • /
    • 2014
  • This study investigates the structural strength analysis due to rib thickness of lower arm. At structural analysis, model 1 has the most deformation by comparing three models. As most equivalent stress is shown at the part connected with wheel knuckle, the strength becomes weaker in cases of three models. At fatigue analysis, model 1 becomes most unstabilized among three models. Model 3 has most fatigue life and the next model is model 2. The range of maximum harmonic response frequencies becomes 140 to 175Hz in cases of three models. Because the critical frequency at model 3 becomes highest among three models but the stress exceeds yield stress, model 3 becomes most unstabilized at vibration durability. As models 1 and 2 has less than yield stress, these models become stabilized. Model 2 becomes most favorable by comparing three models at structural, fatigue and vibration analyses. This study result can be effectively utilized with the design of lower arm by investigating prevention against damage and its strength durability.

차량용 엠블럼에 대한 피로해석을 통한 내구성 연구 (A Durability Study through the Fatigue Analysis on the Emblem for Car)

  • 조재웅
    • 한국융합학회논문지
    • /
    • 제5권4호
    • /
    • pp.39-47
    • /
    • 2014
  • 본 연구는 차량용 엠블럼에 대한 세가지 구속 조건들에 의한 구조 해석 결과들을 비교하고 해석한다. 엠블럼 아래쪽에 판과 위에 엠블럼 사이의 기둥의 각도에 의한 영향을 조사함으로서 해석 결과들이 연구된다. 첫 번째 경우는 엠블럼과 평행할 경우와 두 번째는 아래쪽 판과 수직일 경우 그리고 마지막 경우는 엠블럼과 수직일 경우 이렇게 세 가지 경우이다. 구조 및 피로 해석들을 통하여 차량용 엠블럼의 피로 수명과 그 내구성을 연구함으로서 엠블럼 모델을 최적화할 수 있다고 사료된다. 그리고 디자인 면에서의 융합 기술로의 접목도 가능하여 미적인 감각을 나타낼 수 있다.

수소 충전소용 유량제어밸브(FCV)의 구조 및 피로해석을 통한 내구 성능 평가 (Durability Assessment by Structural and Fatigue Analysis of Flow Control Valves (FCVs) for Hydrogen Refueling Stations)

  • 최인호;하태일;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.240-246
    • /
    • 2022
  • This study was conducted to develop a domestic product for a flow control valve for a hydrogen refueling station, and a domestic prototype was manufactured and the durability performance evaluation was conducted through comparison with an imported products. The stress generated by the internal pressure was checked and safety was confirmed using a commercial structural analysis program, ABAQUS, in accordance with the withstand pressure test standards. In addition, after identifying the weak areas the fatigue life was predicted through a commercial software, fe-safe. This fatigue analysis showed that the hydrogen gas repeated test criteria were satisfied.

자동차 휠의 종류별 피로 내구성 해석 (Fatigue Durability Analysis due to the Classes of Automotive Wheels)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.68-74
    • /
    • 2014
  • This study analyzes structural stress and fatigue about three types of automotive wheels. As maximum equivalent stresses at 1, 2 and 3 types become lower than the yield stress of material and deformations become minute, theses types are thought be safe on durability. Type 2 model has the most fatigue life among three kinds of types and the rest of models with fatigue lives are shown in the order of type 1 and 3. As the most fatigue frequency of type 2 model happens at the state of average stress and amplitude stress on the stress range narrower than type 1 or 3, type 2 model becomes most stable. In case of type 2 with the state near the average stress of 0 MPa and the amplitude stress of 300MPa, the possibility of maximum damage becomes 30%. This stress state can be shown as the most damage possibility. These study results can be effectively utilized with the design on automotive wheel by anticipating and investigating prevention and durability against its damage.

차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구 (A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures)

  • 이상범;박태원;박종성;이선병;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1883-1888
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF