• Title/Summary/Keyword: Fatigue crack growth retardation

Search Result 74, Processing Time 0.021 seconds

A Study on Corrosion Fatigue Crack Propagation Behaviors due to a Single Overload in 6063-T5 Aluminum Alloy (6063-T5 알미늄 합금의 단일과대하중에 의한 부식피로균열진전거동에 관한 연구)

  • 강동명;우창기;이하성
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.38-44
    • /
    • 1997
  • 6063-T5 alloys are tested in laboratory air, water and 3% NaCl solution to investigate the effects of corrosive environment on the retardation behavior through single overload fatigue test. Also, the fatigue crack propagation and the crack closure behavior are studied. The results obtained in this experimental study are summarized as follows. 1) Behaviors of fatigue crack growth retardation are observed in water and 3% NaCl solution as they do in air. The number of delay cycles and the size of affected region by single overload decrease greatly in water and 3% NaCl compared with those in air. 2) In fractographic results, the overload marking by single overload appear remarkably in air, but indistinctly in water and 3% NaCl solution. 3) The effect of crack closure on crack propagation is most remarkable in the beginning of crack propagation. With crack propagation, the crack closure level and its effect decrease greatly.

  • PDF

Calibration of crack growth model for damage tolerance analysis (손상허용해석을 위한 균열성장모델 교정)

  • 주영식;김재훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.67-77
    • /
    • 2002
  • This paper introduces the calibration results of the fatigue crack growth models for damage tolerance analysis of the aircraft structures. Generalized Willenborg model and Wheeler model are calibrated with experimental data tested under the load spectrum of a trainer. The retardation factors such as, shut-off ratio in Generalized Willenborg model and shaping exponent in Wheeler model, are evaluated for aluminum alloys AL2024-T3511, AL7050-T7451 and AL7075-T73511. It is shown that the retardation effect of the crack growth rate depends on the yield strength of material and the maximum stress in the load spectrum. Generalized Willenborg model and Wheeler model give satisfactory prediction of crack growth life but the calibration of the experimental parameters with test is required.

Improvement to Crack Retardation Models Using ″Interactive Zone Concept″

  • Lee, Ouk-Sub;Chen, Zhi-Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.72-77
    • /
    • 2002
  • The load interaction effect can be best illustrated by the phenomenon of overload retardation. Some prediction methods for retardation are reviewed and the problems discussed in the present paper. The so-called under-load effect much of the retardation disappears if a very low level minimum stress follows the overload, is also of importance for a prediction model to work properly under random load spectrum. The concept of Interactive Zone (IZ) fully considering reversed plasticity during unloading was discussed. This IZ concept can be combined with existing models to derive some improved models that can naturally take account of the under-load effect. Some simulations by IZ improved models for test under complex load sequences including multiple overloads and both over/under loads are compared with test results. It is seen that the improvement by IZ concept greatly enhanced the ability of existing models to accommodate complex load interaction effects.

The Characteristics of Fatigue Crack Propagation Behavior in Shear Load (전단하중 하의 피로균열 전파거동의 특징)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

Crack Retardation byt Load Reduction During Fatigue Crack Propagation (피로균열전파 동안 하중감소에 의한 균열지연)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Ahn, Seok-Hwan;Do, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2004-2010
    • /
    • 2003
  • Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference. between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction.

Effects by the Magnitude of Shear Load on the Formation and Propagation of Mode II Branch Cracks (전단하중의 크기가 모드 II 분기균열의 형성과 전파에 미치는 영향)

  • 이정무;송삼홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.487-490
    • /
    • 2004
  • In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

An investigation of the behavior in the corner crack propagation of Al-Alloy by the plane bending fatigue (평면 굽힘 피로하중에 의한 알루미늄 합금재의 모서리 균열 전파거동에 관한 연구)

  • 김영식;김영종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.49-63
    • /
    • 1984
  • The 5086-H116 Al-Alloy plate specimens having an edge through-thickness notch were investigated to find out the characteristics of the corner crack propagation by the plane bending fatigue. The experiments were also carried out in order to clarify the change of the corner crack propagation behaviour due to the various materials and their thicknesses. In addition, the retardation effect of overload on the corner crack propagation was quantatively studied. Main results obtained are as follows; 1. In the case of estimating the crack propagation rate of the corner crack, it is more reasonable to consider the growth rate of fracture surface area than that of crack length. 2. The shape of the corner crack growing in the plane plate under the bending fatigue can be estimated. 3. The crack propagation rate increases with the increasing of the thickness and the decreasing of the Young's modulus of materials. 4. Regardless of a thickness and kind of materials of specimen, the characteristics of the corner crack propagation can be concluded. 5. The retardation effect of overload is distinct in the corner crack propagation.

  • PDF

The Use of Compliance to Investigate Fatigue Crack Retardation by Cover Plates and Stop Hole Expansion (컴프라이언스를 이용한 보강판재와 균열선단 구멍확장의 피로균열 진전 지연효과 규명)

  • 한문식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.204-213
    • /
    • 2001
  • This paper develops the compliance approach to the problem of load sharing between a cracked plate and a cover plate used to bridge the crack. The theory is validated by using calculated stress intensity factors for the covered and uncovered cases and by using stop hole method to reduce experimentally observed growth rates to a common base. Calculations are then made on the effect of cover plate width on fatigue crack retardation in order to demonstrate the predictive capability of the technique.

  • PDF

An evaluation of Fatigue Crack Propagation Behaviors on Cyclic Overload Test (반복과대하중에 의한 피로파괴거동의 고찰)

  • 김용수;신근하;강동명;김병석
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.47-56
    • /
    • 1992
  • The retardation effect of fatigue crack propagation after cyclic overloading seems to be affected by strain hardening exponent. Namely, for the material with high values of n, the delay effect is found to be severe. We proposed a modified crack retardation equation which may apply the retardation of fatigue crack growth after a cyclic overloading, as (da/dN)'$_{cyc}$=($\mu$n+λ)B $\Delta$ $K^{q}$ /[(1- $R_{eff}$) $K_{cf}$$\Delta$K]. where, $R_{eff}$ is effective stress ratio [=( $K_{min}$-K, os)/( $K_{max}$$K_{res}$)] The constants $\mu$=-0.5 and λ=0.6, and the values are found to be identical for materials such as aluminum (A 1060), steel (SS 34), brass ( $B_{s}$ SIB) and stainless steel (SUS 304) used in this investigation. (SUS 304) used in this investigation.ation.n.n.

  • PDF

Fatigue Life Prediction for High Strength AI-alloy under Variable Amplitude Loading (변동하중하에서 고강도 알루미늄 합금의 피로수명 예측)

  • Sim, Dong-Seok;Kim, Gang-Beom;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2074-2082
    • /
    • 2000
  • In this study, to investigate and to predict the crack growth behavior under variable amplitude loading, crack growth tests are conducted on 7075-T6 aluminum alloy. The loading wave forms are generated by normal random number generator. All wave forms have same average and RMS(root mean square) value, but different standard deviation, which is to vary the maximum load in each wave. The modified Forman's equation is used as crack growth equation. Using the retardation coefficient D defined in previous study, the load interaction effect is considered. The variability in crack growth process is described by the random variable Z which was obtained from crack growth tests under constant amplitude loading in previous work. From these, a statistical model is developed. The curves predicted by the proposed model well describe the crack growth behavior under variable amplitude loading and agree with experimental data. In addition, this model well predicts the variability in crack growth process under variable amplitude loading.