• Title/Summary/Keyword: Fatigue Cracking

Search Result 255, Processing Time 0.026 seconds

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang;Zhongqiu Fu;Bohai Ji;Xincheng Li
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.239-251
    • /
    • 2023
  • The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

Development of Fatigue Model of Concrete Pavement Considering Environmental Loading (환경하중을 고려한 콘크리트 포장 피로모형의 개발)

  • Lim, Jin Sun;Kim, Yeon Bok;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.819-829
    • /
    • 2008
  • Fatigue cracking occurs over long time period because dynamic strength of slab continuously decreases by vehicle loading repetitively applied to the concrete pavement. To more accurately predict the fatigue life of the concrete pavement, the stress due to environmental loading should be considered prior to calculating the stress due to the vehicle loading because the stress due to temperature and moisture distribution always exists within the slab. Accordingly, a new fatigue model considering the environmental loading was developed in this research by evaluating factors of existing fatigue models most widely used and by making data points from the models. The applicability of the new model was evaluated by performing a fatigue analysis on the general concrete pavement structure using local climatic and traffic conditions in Korea. It was concluded that the top-down cracking due to the tensile stress at top of the slab is dominant cause of the fatigue failure than the bottom-up cracking occurred at bottom of the slab. More advanced fatigue analysis considering vehicle speed is expected by developing this study.

Development of Fatigue Performance Model of Asphalt Concrete using Dissipate Energy

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.39-43
    • /
    • 2010
  • The main objective of this research is to develop a mechanistic performance predictive model for fatigue cracking of asphalt-aggregate mixtures. Controlled-stress diametral fatigue tests were performed to characterize fatigue cracking of asphalt-aggregate mixtures. Performance prediction model for fatigue cracking was developed using the internal damage ratio (IDR) growth method. In the IDR growth method, the general concepts of the dissipated energy, the reference tensile strain, the threshold tensile strain, and the strain shift factor were introduced. The source of the dissipated energy in the fatigue test is from the intrinsic viscoelastic material property of an asphalt concrete mixture and the damage growth within the asphalt concrete specimen. In controlled-stress mode test, the dissipated energy is gradually increased with an increasing number of load applications.

Application of the Electrochemical Noise Method with Three Electrodes to Monitor Corrosion and Environmental Cracking in Chemical Plants

  • Ohtsu, Takao;Miyazawa, Masazumi;Ebara, Ryuicluro
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Recently an electrochemical noise method (ENM) with three electrodes has gained attention as a corrosion monitoring system in chemical plants. So far a few studies have been carried out for localized corrosion and environmental cracking of chemical plant materials. In this paper the ENM system is briefly summarized. Then an application of ENM to general corrosion for chemical plant materials is described. The emphasis is focused upon the analysis of stress on the corrosion cracking process of austenitic stainless steel in 30% $MgCl_2$ aqueous solution and the corrosion fatigue crack initiation process of 12 Cr stainless steel in 3% NaCl aqueous solution by ENM. Finally future problems for ENM to monitor regarding corrosion and environmental cracking in chemical plants are discussed.

An Experimental Study of Class Fiber Sheet-reinforced Asphalt Pavement (유리섬유 시트 보강 아스팔트포장 내구성 증진에 관한 실험적 연구)

  • 조삼덕;이대영;김진환;김남호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.13-19
    • /
    • 2004
  • The major distress types in the domestic asphalt pavement are fatigue cracking, reflection cracking, thermal cracking, and rutting. To decrease the pavement distress by reinforcing asphalt pavement with reinforcement interlayer in geosynthetics to the traditional pavement systems can improve these problems. This study conducted laboratory test with asphalt pavement reinforced by glass fiber sheet to fix systematically geosynthetic asphalt pavement system. Laboratory tests like wheel tracking test and crack resistance test are conducted to analyze the controlling effect of glass fiber sheet on cracking and rutting of asphalt pavement.

The effect of diffusible hydrogen on the fatigue cracking of the arc welded part in the high tensile strength steel (高張力鋼 아이크溶接 본드部의 疲勞特性에 미치는 擴散性 水素의 影響에 관한 硏究)

  • 김영식;구자영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.830-836
    • /
    • 1986
  • In this study, the effect of hydrogen absorbed in welding process on the fatigue behaviour of the weld bond was quantitatively made clear. The influence of cyclic loading rate on the fatigue characteristics of the manual arc weld bond was inspected under the condition of constant amount of hydrogen. Moreover, the fatigue cracking mechanism concerning the diffusible hydrogen in the welded part was discussed in connection with fractographs of the fracture surfaces.

Corrosion Fatigue of Austenitic Stainless Steel in Different Hot Chloride Solutions

  • Visser, A.;Mori, G.;Panzenbock, M.;Pippan, R.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.172-176
    • /
    • 2015
  • Austenitic stainless steel was investigated under cyclic loading in electrolytes with different chloride contents and pH and at different temperatures. The testing solutions were 13.2 % NaCl (80,000 ppm $Cl^-$) at $80^{\circ}C$and 43 % $CaCl_2$ (275,000 ppm $Cl^-$) at $120^{\circ}C$. In addition to S-N curves in inert and corrosive media, the fracture surfaces were investigated with a scanning electron microscope (SEM) to analyse the type of attack. The experimental results showed that a sharp decrease in corrosion fatigue properties can be correlated with the occurrence of stress corrosion cracking. The correlation of occurring types of damage in different corrosion systems is described.

Complex Leakage Probability Evaluation of Nuclear Pipes by Fatigue and Stress Corrosion Cracking (피로 및 응력부식균열에 의한 원전 배관의 복합누설확률 평가)

  • Kim, Seung Hyun;Goni, Nasimul;Chang, Yoon-Suk;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • In the present study, complex leakage probabilities of nuclear pipes due to fatigue and stress corrosion cracking are evaluated by using the PINTIN(Piping INTegrity INner flaws) that is developed based on the existing PRAISE(Piping Reliability Analysis Including Seismic Events) program. With regard to the aging and crack instability, small leak and big leak probabilities are calculated for several pipes in a reactor coolant system of domestic nuclear plant. Moreover, sensitivity analysis is also performed to find out the effect of parameters for the leakage of pipes, which shows the coolant temperature is the most influencing parameter.

Electrical signal characteristics of conductive asphalt concrete in the process of fatigue cracking

  • Yang, Qun;Li, Xu;Wang, Ping;Zhang, Hong-Wei
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.469-477
    • /
    • 2014
  • As a kind of intelligent materials, conductive asphalt concrete has a broad application prospect including melting ice and snow on the pavement, closing cracks in asphalt concrete, sensing pavement damage, and so on. Conductive pavement will be suffered from fatigue failure as conventional pavement in the process of service, and this fatigue damage of internal structure can be induced by electrical signal output. The characteristics of electrical signal variation of conductive asphalt concrete in the process of fatigue cracking were researched in this paper. The whole process was clearly divided into three stages according to resistance changes, and the development of fatigue damage wasn't obvious in stage I and stage II, while in stage III, the synchronicity between the resistance and damage began to appear. Thus, fatigue damage variable D and initial damage value $D_0$ represented by the functions of resistance were introduced in stage III. After calculating the initial damage value $D_0$ under different stress levels, it was concluded that the initial damage value $D_0$ had no noticeable change, just ranged between 0.24 and 0.25. This value represented a critical point which could be used to inform the repair time of early fatigue damage in the conductive asphalt pavement.

Health Monitoring of a Composite Actuator with a PZT Ceramic during Electromechanical Fatigue Loading

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.541-549
    • /
    • 2007
  • This work describes an investigation into the feasibility of using an acoustic emission (AE) technique to evaluate the integrity of a composite actuator with a PZT ceramic under electromechanical cyclic loading. AE characteristics have been analyzed in terms of the behavior of the AE count rate and signal waveform in association with the performance degradation of the composite actuator during the cyclic tests. The results showed that the fatigue cracking of the composite actuator with a PZT ceramic occurred only in the PZT ceramic layer, and that the performance degradation caused by the fatigue damage varied immensely depending on the existence of a protecting composite bottom layer. We confirmed the correlations between the fatigue damage mechanisms and AE signal types for the actuators that exhibited multiple modes of fatigue damage; transgranular micro damage, intergranular fatigue cracking, and breakdown by a short circuiting were related to a burst type signal showing a shortly rising and slowly decaying waveform with a comparably low voltage, a continuous type signal showing a gradual rising and slowly decaying waveform with a very high voltage and a burst and continuous type signal with a high voltage, respectively. Results from the present work showed that the evolution of fatigue damage in the composite actuator with a PZT ceramic can be nondestructively identified via in situ AE monitoring and microscopic observations.